

2025 API PIPELINE CONFERENCE & EXPO

Pipeline, Control Room and Cybernetics

Machine Learning for Pipeline Risk

Overview & Panel Discussion

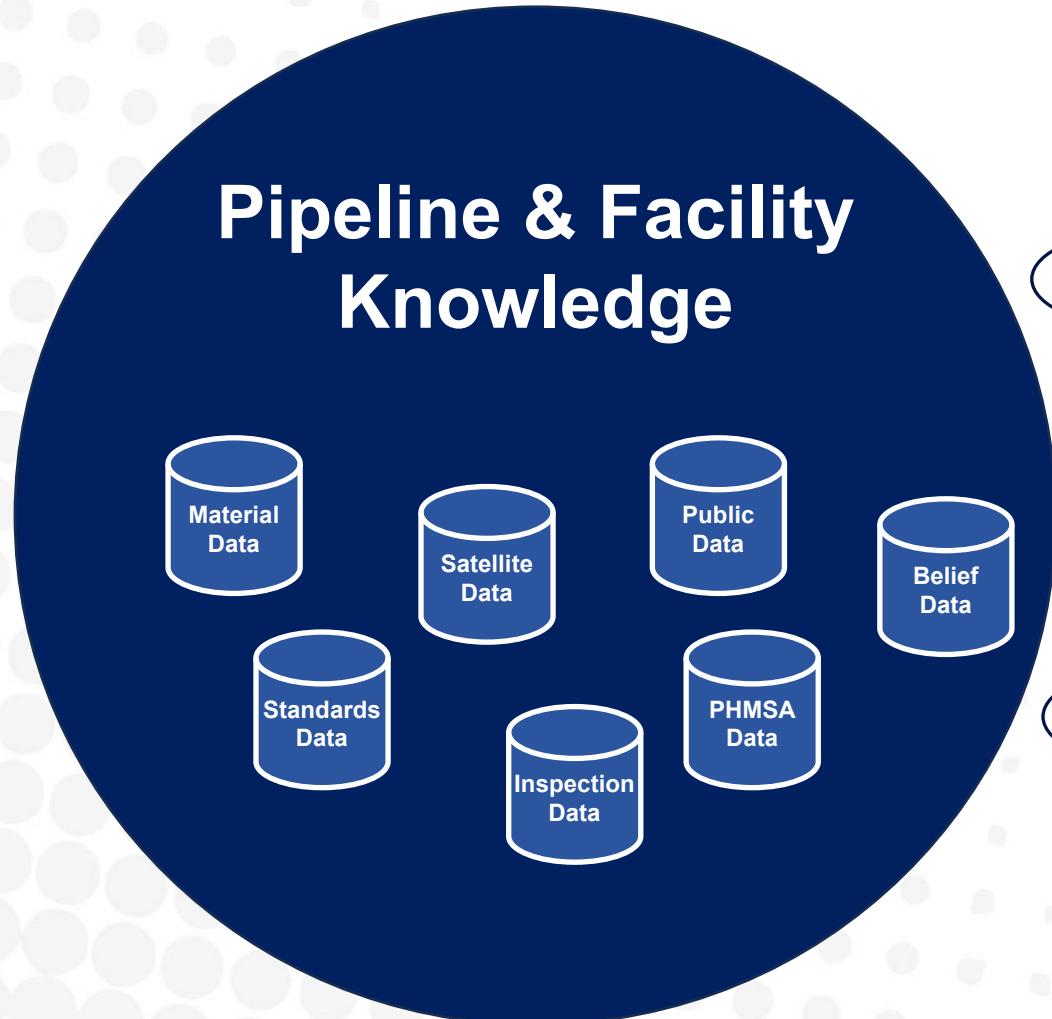
APRIL 28-30, 2025

Marriott Austin Downtown

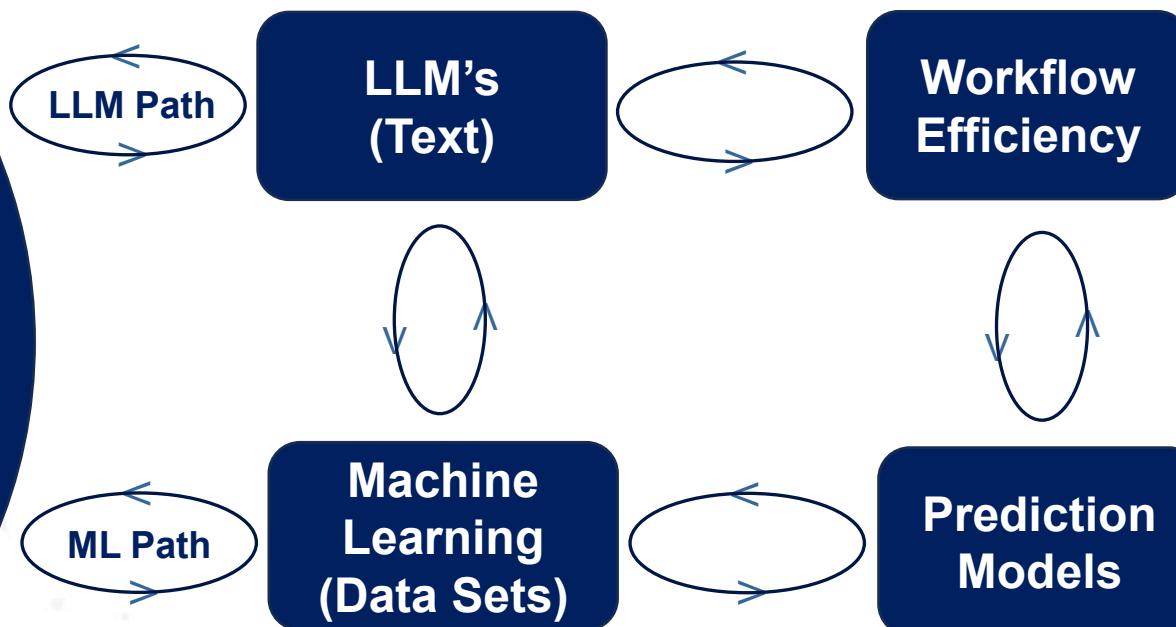
Machine Learning for Risk

- **AI & Machine Learning**
- **Risk Use Case**
- **Panel Discussion**

Big Picture



Learning



Big Picture – LLM's

The equation for pipeline risk is probability of failure (PoF)
x Consequence of Failure (CoF)

Human Enters “Truth”

Token count
33

Truth Converted to Tokens

```
<|im_start|>system<|im_sep|>The equation for pipeline risk  
is probability of failure (PoF) x Consequence of Failure (C  
oF)<|im_end|><|im_start|>user<|im_sep|><|im_end|><|im_start|>  
assistant<|im_sep|>
```

Training Data Learns (Weights) this Sequence

```
200264, 17360, 200266, 976, 42006, 395, 29412, 7031, 382, 3  
4933, 328, 14090, 350, 25010, 37, 8, 1215, 25365, 6975, 32  
8, 59925, 350, 8037, 37, 8, 200265, 200264, 1428, 200266, 2  
00265, 200264, 173781, 200266
```


Big Picture – LLM's

what is the equation for pipeline risk?

Q DeepSearch

Q Think

Attach

Human Asks Question

LLM Returns “Best” Response based on Context & Weights

Risk = Probability of Failure (PoF) × Consequence of Failure (CoF)

Breakdown:

1. Probability of Failure (PoF):

- This represents the likelihood that the pipeline will fail due to factors like corrosion, external damage, material defects, or operational errors.
- It's often calculated using historical data, inspection results, or statistical models.
- Example factors: pipe age, wall thickness, pressure, environmental conditions.

2. Consequence of Failure (CoF):

- This measures the potential impact if a failure occurs, such as environmental damage, economic loss, or human safety risks.
- It's often quantified in terms of cost (e.g., dollars), area affected, or population at risk.

Big Picture – LLM's & Data Stores

write code to calculate pipeline risk against an MS SQL table

Q DeepSearch Q Think

Attach


```
R
# Load required libraries
library(DBI)
library(odbc)

# Establish connection to MS SQL Server
con <- dbConnect(odbc::odbc(),
                  Driver = "ODBC Driver 17 for SQL Server", # Adjust driver name if different
                  Server = "your_server", # e.g., "localhost" or IP address
                  Database = "your_db", # e.g., "PipelineDB"
                  UID = "your_user", # e.g., "sa"
                  PWD = "your_password", # Your SQL Server password
                  Port = 1433) # Default MS SQL port

# Check if connection is successful
if (dbIsValid(con)) {
  cat("Connected to MS SQL Server database successfully!\n")
} else {
  stop("Failed to connect to the database.")
}

# Function to calculate pipeline risk
calculate_pipeline_risk <- function(pof, cof) {
  return(pof * cof)
}

# Query to fetch pipeline data
query <- "SELECT segment_id, pof, cof FROM dbo.pipeline_data"
pipeline_data <- dbGetQuery(con, query)

# Calculate risk for each segment
pipeline_data$risk <- mapply(calculate_pipeline_risk, pipeline_data$pof, pipeline_data$cof)
```

**Human Requests Code to Apply to
Data Store since Data Stores are not
Tokenized for Learning**

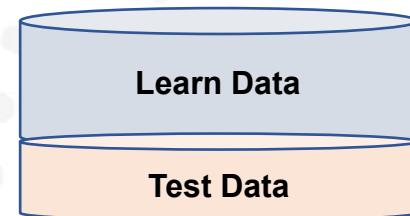
**LLM Returns Code to Apply to
Data Sets**

**Code Requires Function Inputs,
Review and Verification by
Human or System**

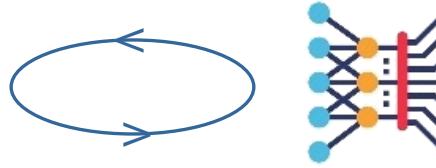
Big Picture - Machine Learning (ML)

Learning Target
(Threats, Consequence, Risk)

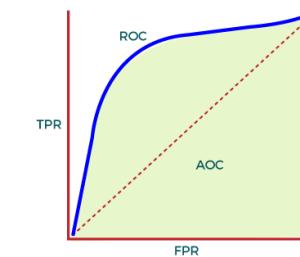
Training Data
(Observations)



Learned Model
(Methods, Tuning)



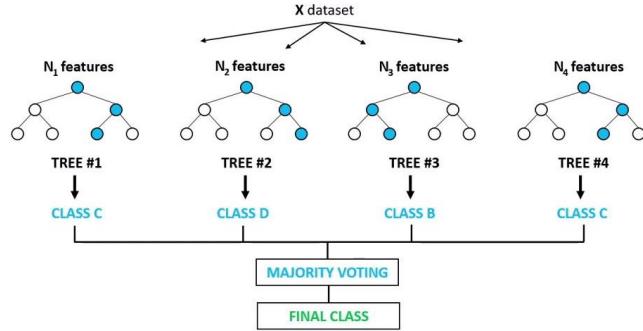
Performance & Insights
(Validation & Acceptance)



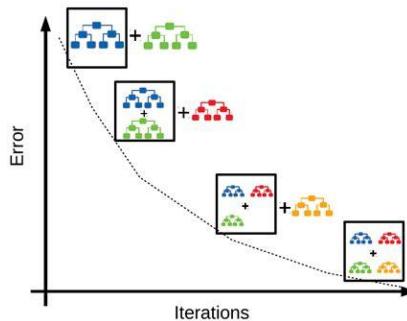
**“Use LLM to Create Code to Support
Machine Learning Process”**

Learning Methods

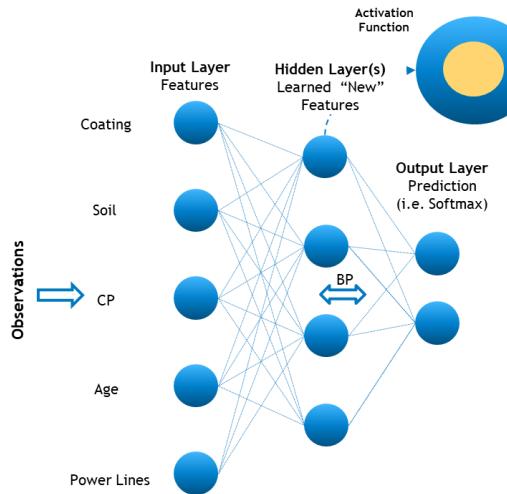
Tree
Bagging



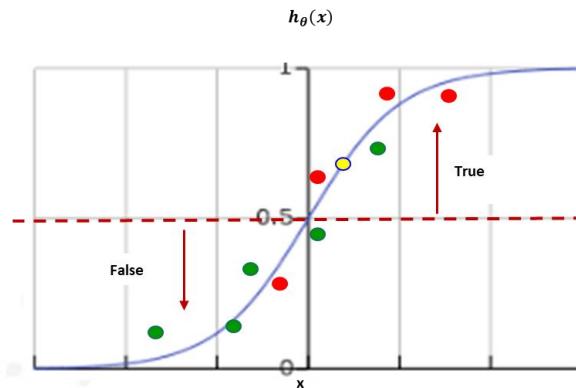
Tree
Boosting



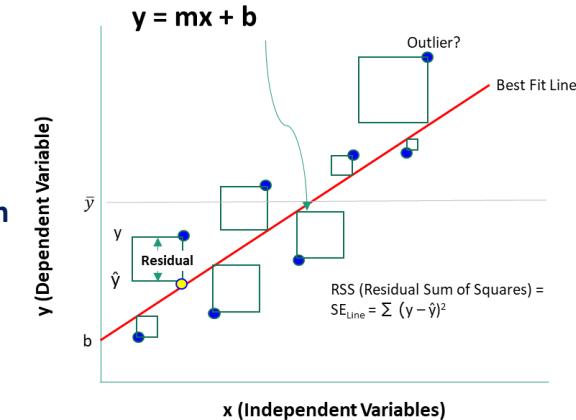
Neural
Net



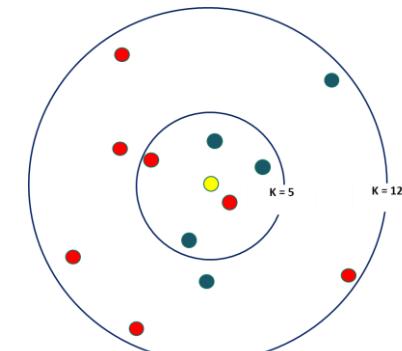
Logistic
Regression



Linear
Regression



KNN



Learning Tasks

Classification

- Probability of Cracking
- Probability of Third-Party Damage
- Probability of Pipe Manufacturer

Regression

- Prediction of Corrosion Growth Rates
- Prediction of Inspection Costs
- Simulation of Deterministic Results

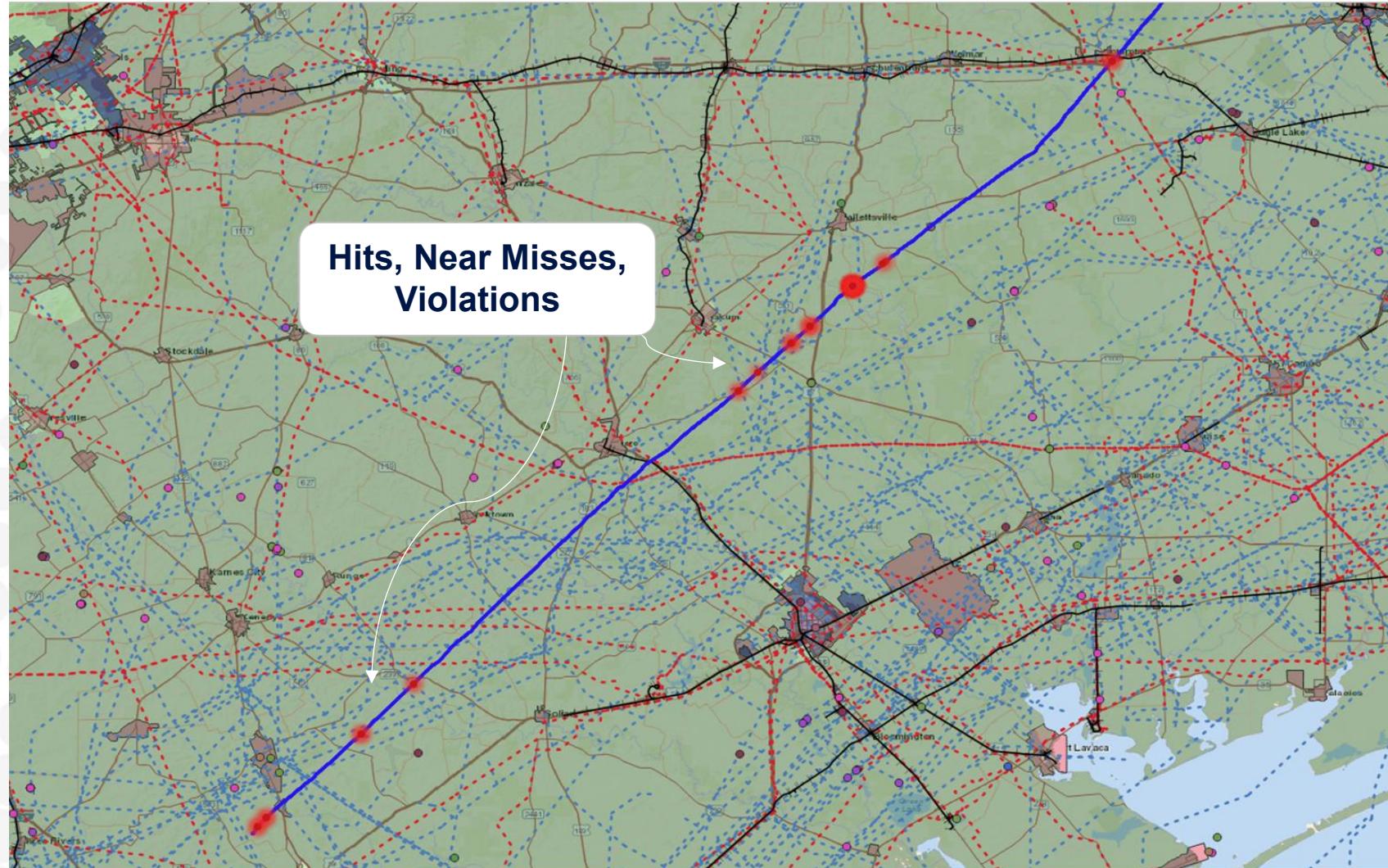
Time Series

- Prediction of CP Readings
- Prediction of Ground Bed Life
- Simulation of Seasonal Patterns

Common Questions

- Are Machine Learned Models an Improvement Over Deterministic Models?
- Do I have Enough of the Right Data?
- Are Patterns Inferential or Predictive? What's the Difference?
- Does the Model Meet Domain Expert Review?
- What Assets can I Apply the Learned Model?
- Is Performance Acceptable for Production Use?

Third Party Damage Risk



Training Data

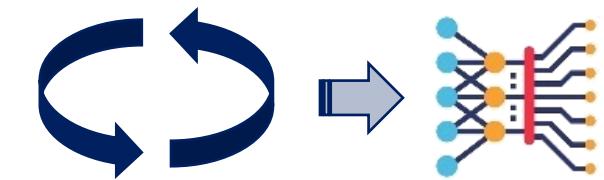
- Hits & Near-Misses
- One-Calls
- Pipe Properties
- Depth Cover
- Activity
- Land-Use
- Crossings
- Structures
- Patrol
- Public Awareness

Learning Target

Predictors

		Class	Diameter	DOC	Farmland	Install_Yr	LineMark	PatroFreq
		All	A	A	All	A	All	All
No_Evidence	F	1.00	8.00	24.00	Not_Farmland	1,980.00	Line_of_Site	Semi-Annual
No_Evidence	F	1.00	8.00	24.00	Not_Farmland	1,980.00		Semi-Annual
No_Evidence	F	1.00	8.00	25.00	Not_Farmland	1,980.00	Line_of_Site	Semi-Annual
No_Evidence	F	1.00	8.00	33.00	Not_Farmland	1,980.00	Line_of_Site	Semi-Annual
No_Evidence	F	1.00	8.00	30.00	Not_Farmland	1,980.00	Line_of_Site	Semi-Annual
One_Call_Violation	T	1.00	8.00	26.00	Not_Farmland	1,980.00	Line_of_Site	Semi-Annual
One_Call_Violation	T	2.00	8.00	26.00	Not_Farmland	1,980.00	Line_of_Site	Semi-Annual
Near_Miss	T	2.00	8.00	29.00	Farmland	1,980.00	Line_of_Site	Semi-Annual
One_Call_Violation	T	2.00	8.00	24.00	Farmland	1,980.00	Line_of_Site	Semi-Annual
Near_Miss	T	2.00	8.00	28.00	Farmland	1,980.00	Line_of_Site	Semi-Annual
Near_Miss	T	2.00	8.00	34.00	Farmland	1,980.00	Line_of_Site	Semi-Annual
Near_Miss	T	2.00	8.00	41.00	Farmland	1,980.00	Line_of_Site	Semi-Annual
No_Evidence	F	2.00	8.00	31.00	Farmland	1,980.00	Line_of_Site	Bi-Weekly
No_Evidence	F	3.00	8.00	24.00	Farmland	1,980.00	Line_of_Site	Bi-Weekly

Training Data



Machine
Learning
Process

Learned
Model

Learned Model Classification Performance

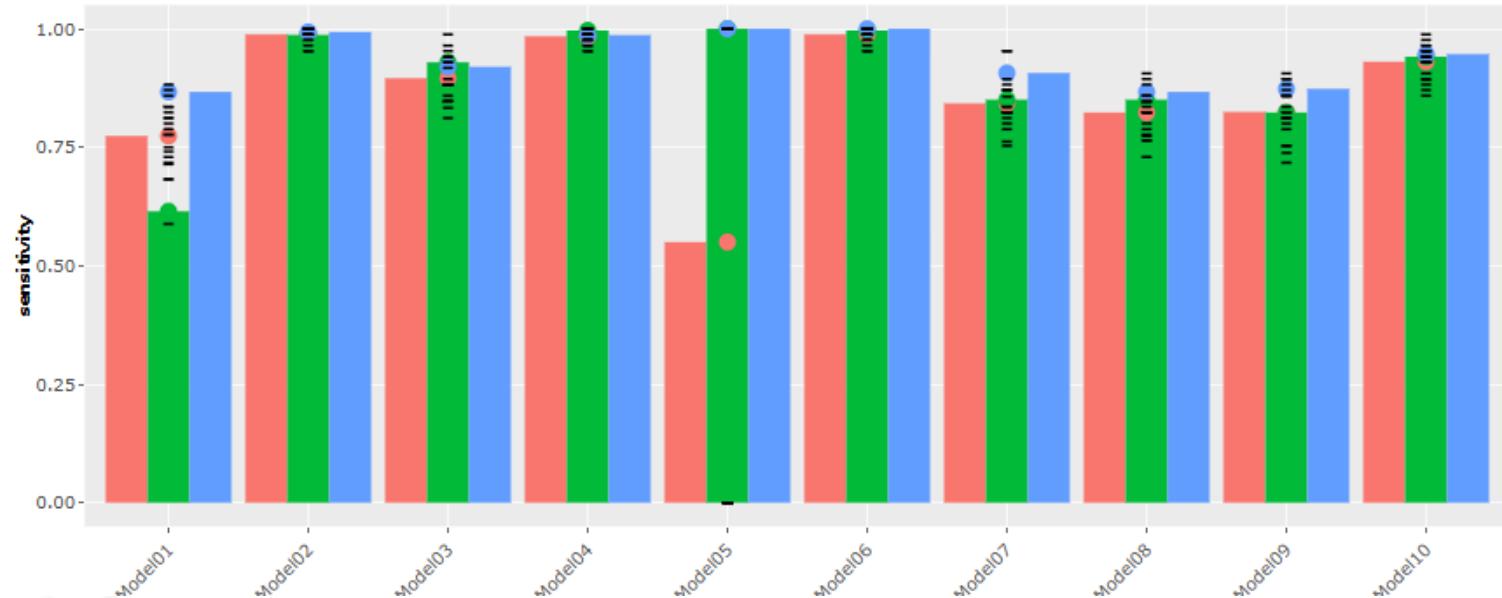
Metrics

- Accuracy
- Sensitivity
- Specificity
- AUC

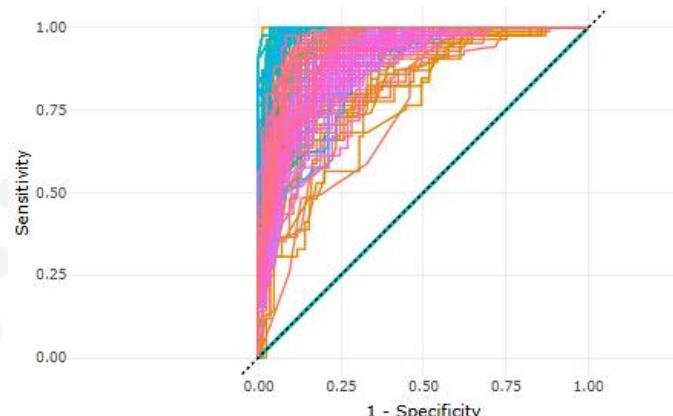
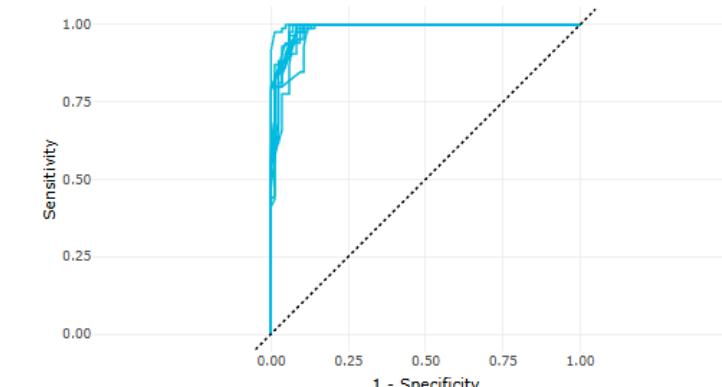
Model

- Xgboost Method
- 2000 Trees
- 5 Depth
- 2 Min Obs
- .0001 Loss

Candidate Model Performance

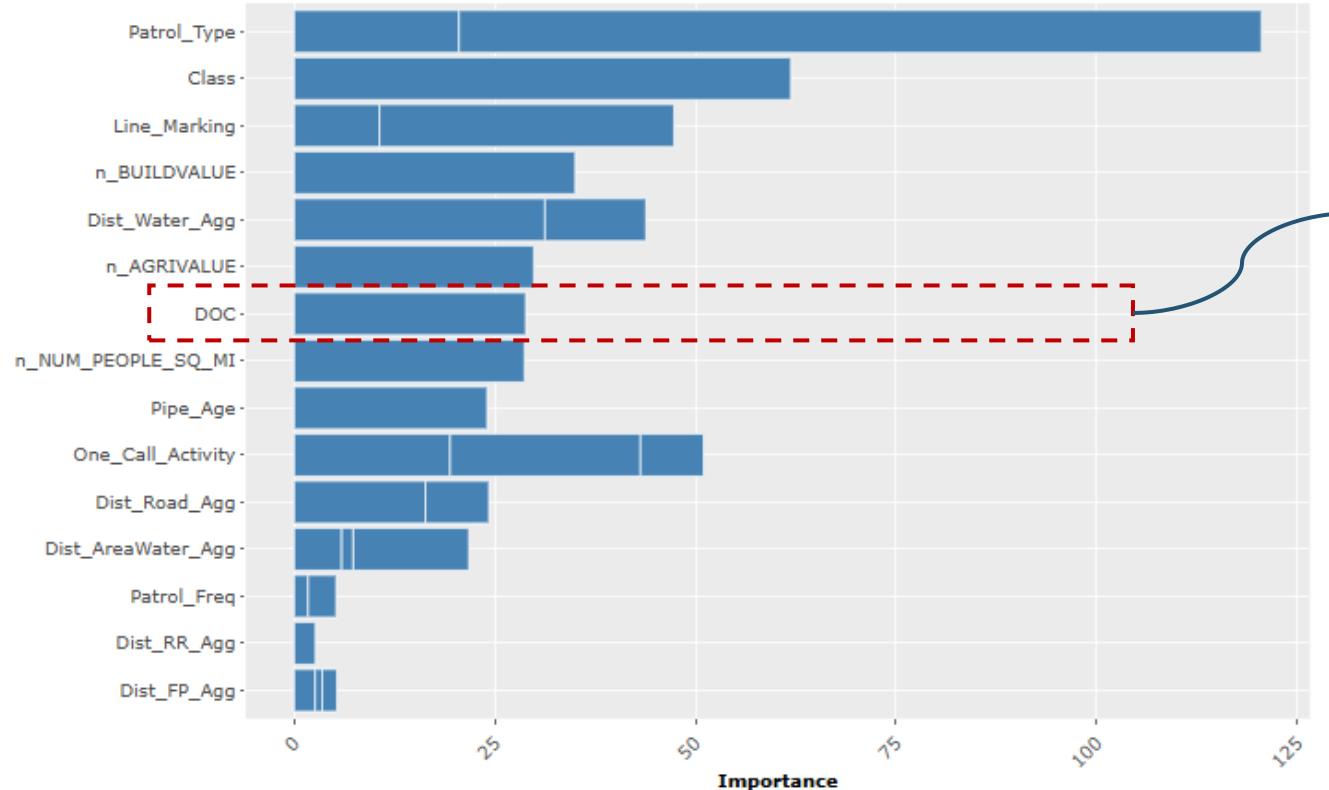


Candidate Model ROC's

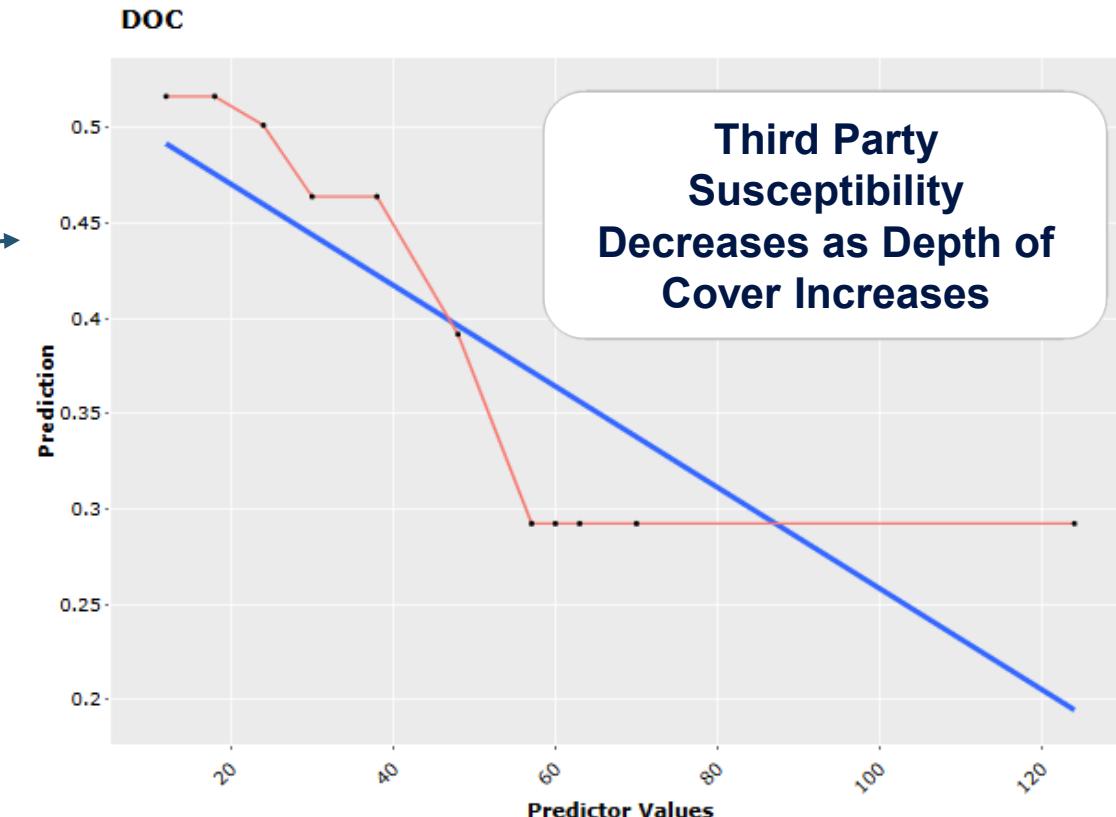


Learned Model – Global Weights

Model Predictor Importance



Model Predictor Directionality



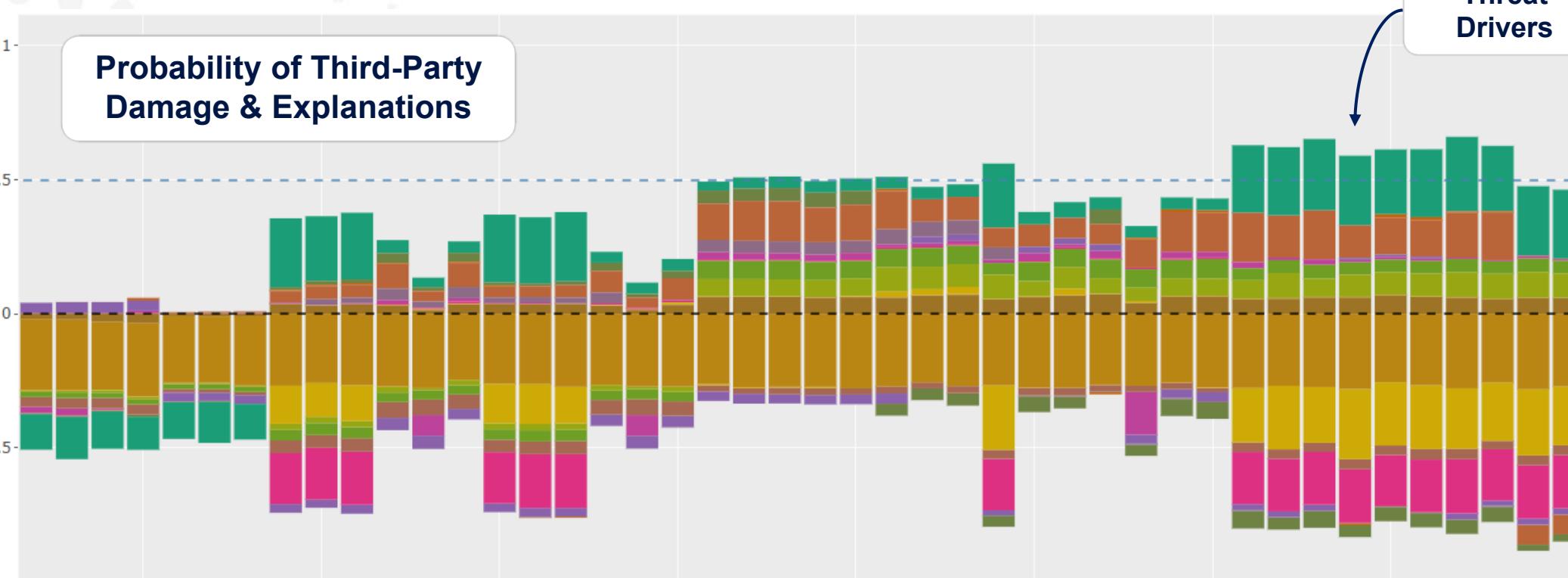
Model Application & Explanation

+

Probability of Third-Party
Damage & Explanations

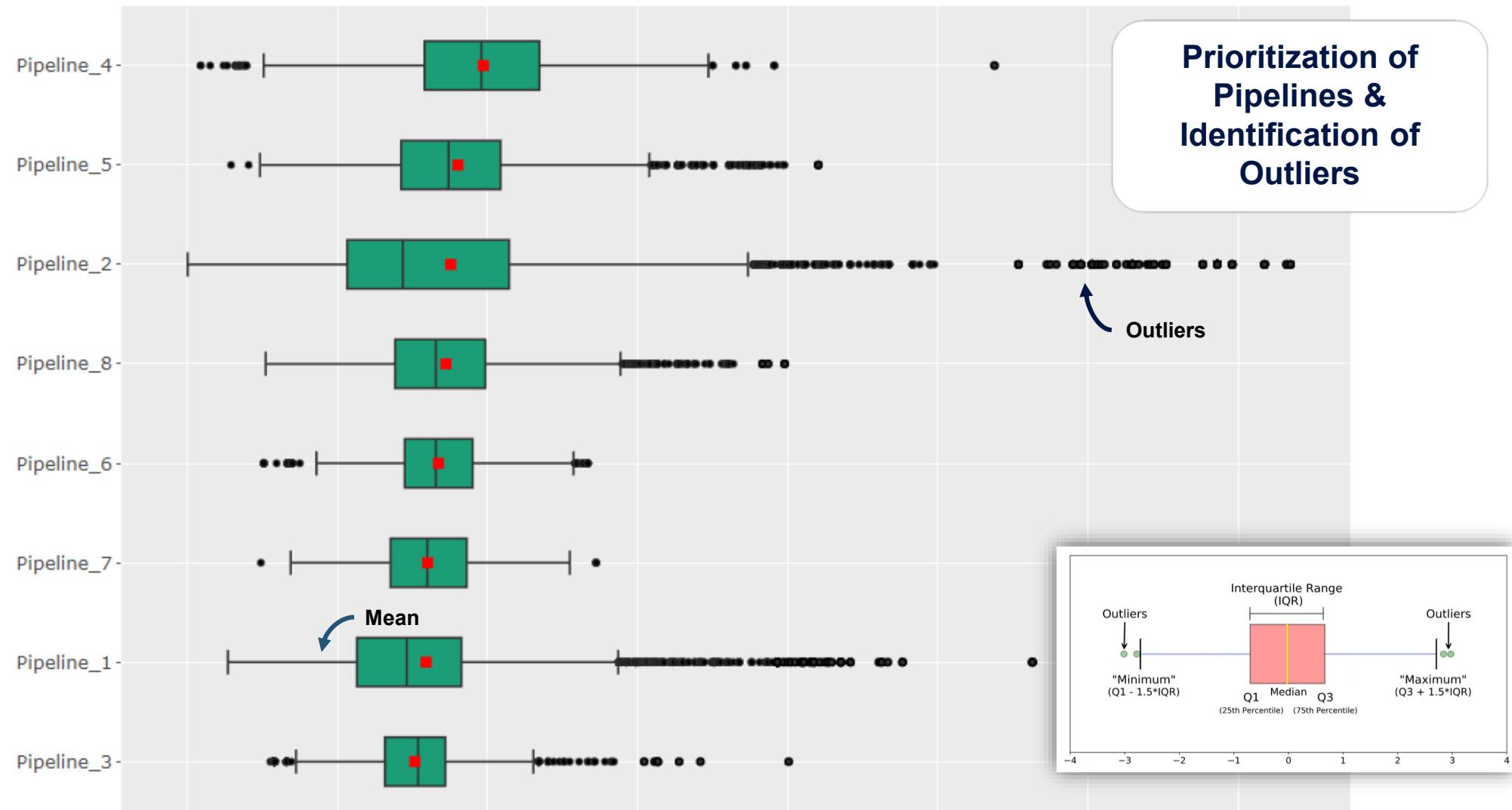
Threat
Drivers

Contribution to/from Mean



Pipeline Segments

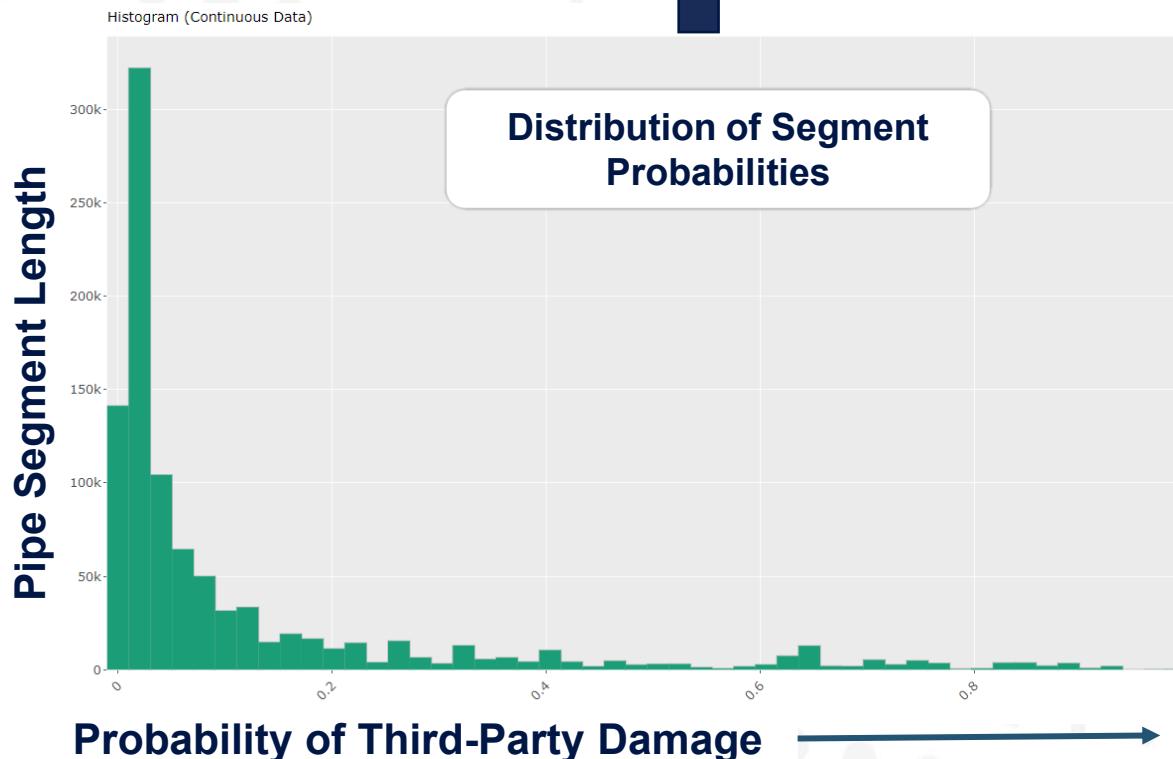
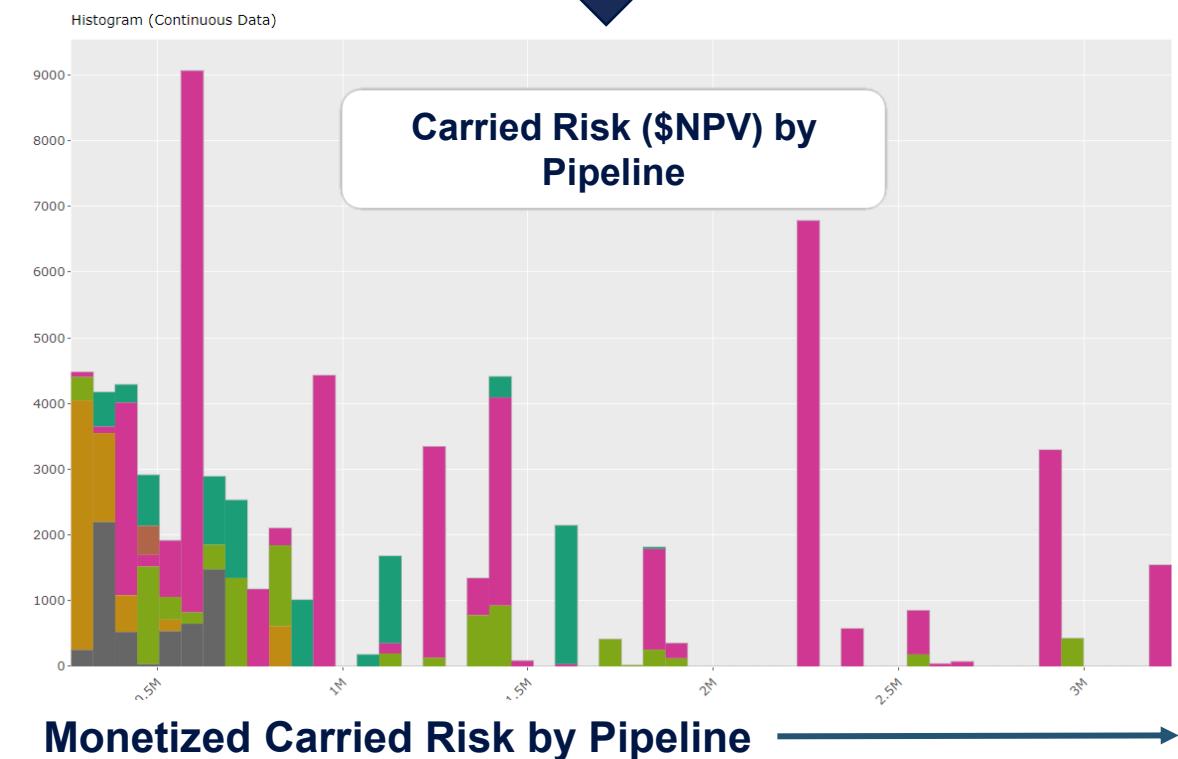
Model Application



Monetized Risk Time Independent Threats

QRA

- Consider resistance (pipe WT, toughness)
- Normalize to incident distributions (P50\P99)



Summary

Machine Learning has an Important Role in Risk

- Leverage Existing Data
- Find Actionable Patterns based on Actual Observations
- Validate & Explain Prediction Results
- Align with AI Technology Progression & Adoption

Panel Discussion

- Michael Gloven, President, Pipeline-Risk (PLR)
- Victor Anisi, phd Candidate, Colorado School of Mines
- Joel Bassani,
- Syed Aijaz, Pipeline Integrity Engineer, TC Energy

2025 API PIPELINE CONFERENCE & EXPO

Pipeline, Control Room and Cybernetics

Thank You

Michael Gloven, PE

michaelgloven@pipeline-risk.com

APRIL 28-30, 2025
Marriott Austin Downtown

American
Petroleum
Institute

