

# Machine Learning & Risk (TU9)



**Michael Gloven, PE**

**[michaelgloven@pipeline-risk.com](mailto:michaelgloven@pipeline-risk.com)**

# Land Acknowledgement

The Banff Centre for Arts and Creativity is located on the side of Sacred Buffalo Guardian Mountain.

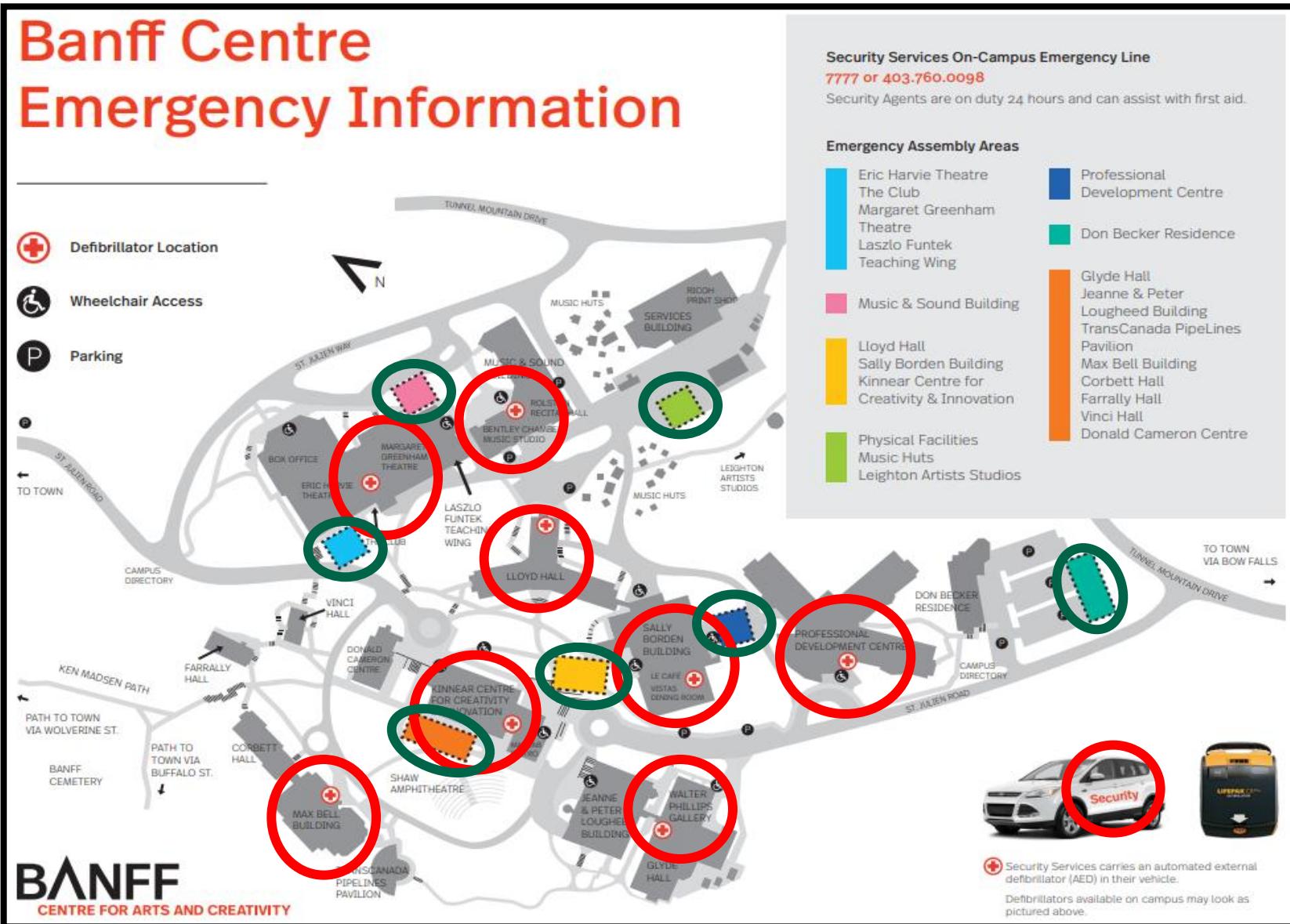
- The Banff area, known as "Minhrpa" (translated in Stoney Nakoda as "the waterfalls") is part of the Treaty 7 territory where we recognize oral practices of the Îyârhe Nakoda (Stoney Nakoda) – comprised of the Bearspaw, Chiniki, and Goodstoney First Nations – as well as the Tsuut'ina First Nation and the Blackfoot Confederacy comprised of the Siksika, Piikani, Kainai.
- This territory is home to the Shuswap Nations, Ktunaxa Nations, and Métis Nation of Alberta, Region 3. We acknowledge all Nations who live, work, and play here, help us steward this land, and honour and celebrate this place.

# Site Safety

Site Security Cellphone:  
**403-760-0098**

- **AED: 8 Locations + Security Cars**
- **7777: House Phone**
- **911: Emergencies** Be as specific as possible – building, room, and issue
- **30 Second Alarm:** Proceed to **Muster** Points

## Banff Centre Emergency Information



The map shows the Banff Centre campus layout with various buildings and landmarks. Red circles highlight the locations of 8 AEDs and a Security vehicle. Green dashed boxes indicate Muster Points. A legend on the right details Emergency Assembly Areas and campus facilities.

**Emergency Assembly Areas:**

- Professional Development Centre
- Don Becker Residence
- Glyde Hall
- Music & Sound Building
- Lloyd Hall
- Physical Facilities

**Campus Facilities:**

- Defibrillator Location
- Wheelchair Access
- Parking
- TO TOWN
- CAMPUS DIRECTORY
- ST. JULIEN ROAD
- ST. JULIEN ROAD
- TO TOWN VIA BOW FALLS
- TUNNEL, MOUNTAIN DRIVE
- ERIC HARVIE THEATRE
- MARGARET GREENHAM THEATRE
- BOX OFFICE
- ERIK HARVIE THEATRE
- LASZLO FUNTEK TEACHING WING
- LLOYD HALL
- VINCI HALL
- DONALD CAMERON CENTRE
- FARRALLY HALL
- PATH TO TOWN VIA WOLVERINE ST.
- BANFF CEMETERY
- CORBETT HALL
- SHAW AMPHITHEATRE
- MAX BELL BUILDING
- TRANS CANADA PIPELINES PAVILION
- ROLF RECITAL HALL
- BENTLEY CHANCE MUSIC STUDIO
- MUSIC & SOUND
- MUSIC HUTS
- ROOM PRINT SHOP
- SERVICES BUILDING
- LEIGHTON ARTISTS STUDIOS
- LE CAFE VISTAS DINING ROOM
- WALTER PHILLIPS GALLERY
- GLYDE HALL
- JEANNE & PETER LOUGHREY BUILDING
- ROBERT CORBETT HALL
- MAX BELL BUILDING
- CORBETT HALL
- FARRALLY HALL
- VINCI HALL
- DONALD CAMERON CENTRE
- PROFESSIONAL DEVELOPMENT CENTRE
- LE CAFE VISTAS DINING ROOM
- WALTER PHILLIPS GALLERY
- GLYDE HALL
- JEANNE & PETER LOUGHREY BUILDING
- ROBERT CORBETT HALL
- MAX BELL BUILDING
- CORBETT HALL
- FARRALLY HALL
- VINCI HALL
- DONALD CAMERON CENTRE

**Security Services On-Campus Emergency Line**  
**7777 or 403.760.0098**  
Security Agents are on duty 24 hours and can assist with first aid.

**Security Services carries an automated external defibrillator (AED) in their vehicle.**  
Defibrillators available on campus may look as pictured above.

**BANFF**  
CENTRE FOR ARTS AND CREATIVITY

**2025**  
BANFF PIPELINE WORKSHOP

# Machine Learning & Risk

- Big Picture & Common Questions
- Use Cases (Learning Tasks)
  - Classification
  - Regression
  - Time-Series
  - Model Validation
- Summary & Wrap-Up

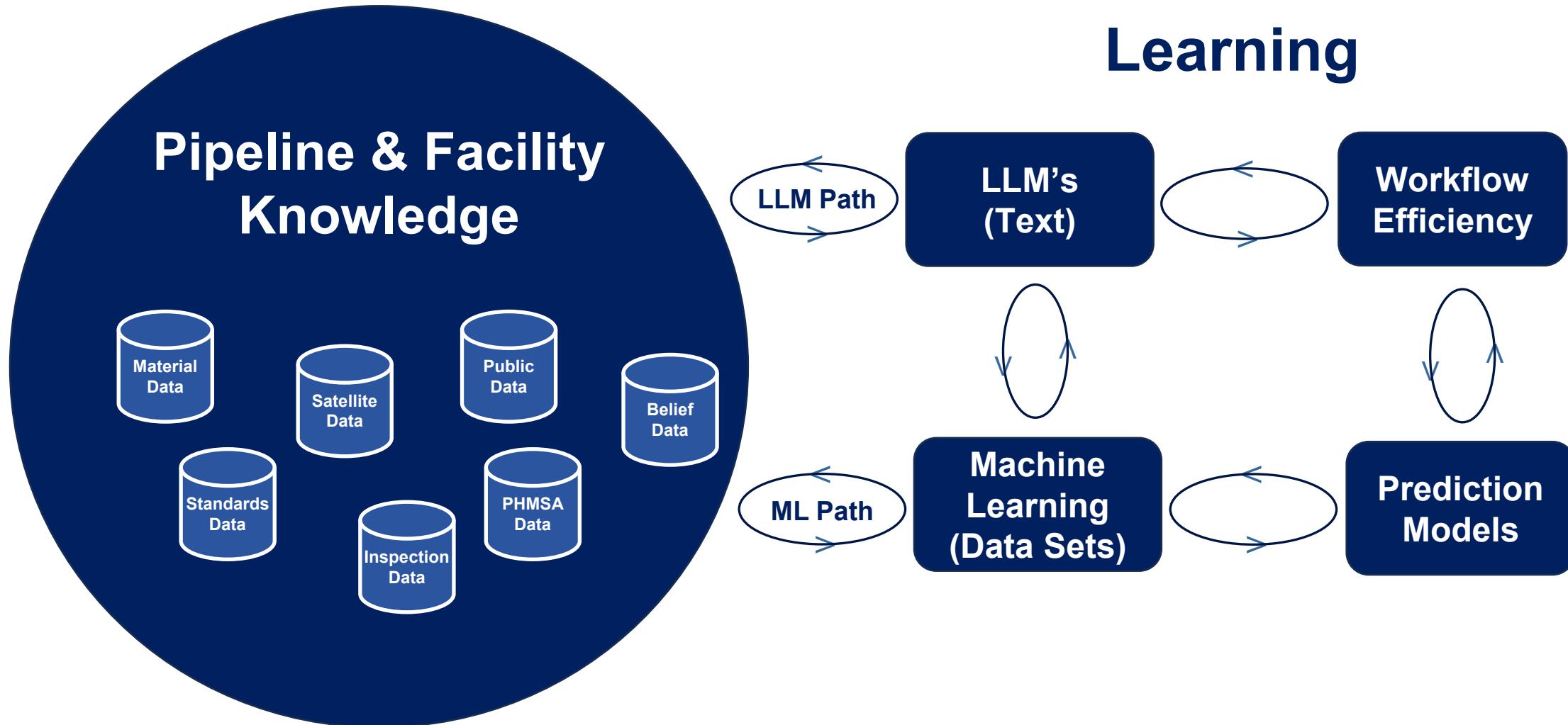


# Big Picture - The Business Case

- **Reduce Over-Inspections:** Pinpoint exactly which assets need attention, reducing unnecessary inspections while ensuring critical risks aren't overlooked
- **Uncover Hidden Risks:** Detect subtle patterns, interactions and anomalies that deterministic models might miss
- **Speed Up Decision-Making:** Automate complex analysis to deliver actionable insights faster
- **Maximize Existing Investments:** ML integrates with your current systems, enhancing accuracy and efficiency without requiring a complete overhaul.



# Big Picture



# Big Picture – LLM's



The equation for pipeline risk is probability of failure (PoF)  
x Consequence of Failure (CoF)

**Human Enters “Truth”**

Token count  
33

**Truth Converted to Tokens**

```
<|im_start|>system<|im_sep|>The equation for pipeline risk  
is probability of failure (PoF) x Consequence of Failure (C  
oF)<|im_end|><|im_start|>user<|im_sep|><|im_end|><|im_start  
|>assistant<|im_sep|>
```

**Training Data Learns (Weights) this Sequence**

```
200264, 17360, 200266, 976, 42006, 395, 29412, 7031, 382, 3  
4933, 328, 14090, 350, 25010, 37, 8, 1215, 25365, 6975, 32  
8, 59925, 350, 8037, 37, 8, 200265, 200264, 1428, 200266, 2  
00265, 200264, 173781, 200266
```

# Big Picture – LLM's

what is the equation for pipeline risk?

Q DeepSearch

Q Think

Attach



Human Asks Question

## LLM Returns “Best” Response based on Context & Weights

**Risk = Probability of Failure (PoF) × Consequence of Failure (CoF)**

**Breakdown:**

### 1. Probability of Failure (PoF):

- This represents the likelihood that the pipeline will fail due to factors like corrosion, external damage, material defects, or operational errors.
- It's often calculated using historical data, inspection results, or statistical models.
- Example factors: pipe age, wall thickness, pressure, environmental conditions.

### 2. Consequence of Failure (CoF):

- This measures the potential impact if a failure occurs, such as environmental damage, economic loss, or human safety risks.
- It's often quantified in terms of cost (e.g., dollars), area affected, or population at risk.

# Big Picture – LLM's & Data Stores

write code to calculate pipeline risk against an MS SQL table

Q DeepSearch Q Think

Attach

Human Requests Code to Apply to Data Store since Data Stores are not Tokenized for Learning



```
R

# Load required libraries
library(DBI)
library(odbc)

# Establish connection to MS SQL Server
con <- dbConnect(odbc::odbc(),
                 Driver = "ODBC Driver 17 for SQL Server", # Adjust driver name if different
                 Server = "your_server", # e.g., "localhost" or IP address
                 Database = "your_db", # e.g., "PipelineDB"
                 UID = "your_user", # e.g., "sa"
                 PWD = "your_password", # Your SQL Server password
                 Port = 1433) # Default MS SQL port

# Check if connection is successful
if (dbIsValid(con)) {
  cat("Connected to MS SQL Server database successfully!\n")
} else {
  stop("Failed to connect to the database.")
}

# Function to calculate pipeline risk
calculate_pipeline_risk <- function(pof, cof) {
  return(pof * cof)
}

# Query to fetch pipeline data
query <- "SELECT segment_id, pof, cof FROM dbo.pipeline_data"
pipeline_data <- dbGetQuery(con, query)

# Calculate risk for each segment
pipeline_data$risk <- mapply(calculate_pipeline_risk, pipeline_data$pof, pipeline_data$cof)
```

LLM Returns Code to Apply to Data Sets

Code Requires Function Inputs, Review and Verification by Human or System

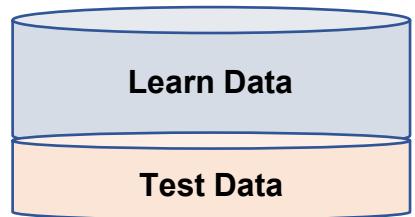
# Machine Learning & Risk



**Learning Target**  
(Threats, Consequence, Risk)



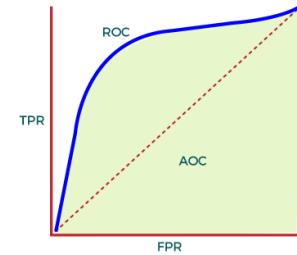
**Training Data**  
(Observations)



**Learned Model**  
(Methods, Tuning)



**Performance & Insights**  
(Validation & Acceptance)



**“Use LLM’s to Create Code to  
Support Machine Learning Process”**

**Use LLM**

# Machine Learning Tasks



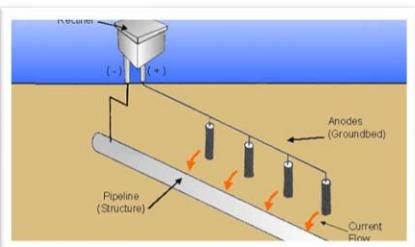
## Classification

- Probability of Cracking
- Probability of Third-Party Damage
- Probability of Pipe Manufacturer



## Regression

- Prediction of Corrosion Growth Rates
- Prediction of Inspection Costs
- Simulation of Deterministic Results



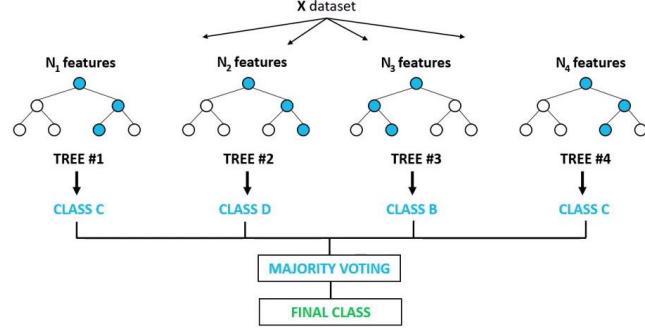
## Time Series

- Prediction of CP Readings
- Prediction of Ground Bed Life
- Simulation of Seasonal Patterns

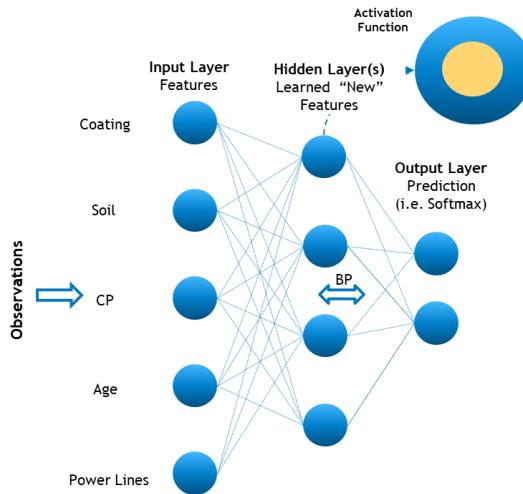
# Learning Methods



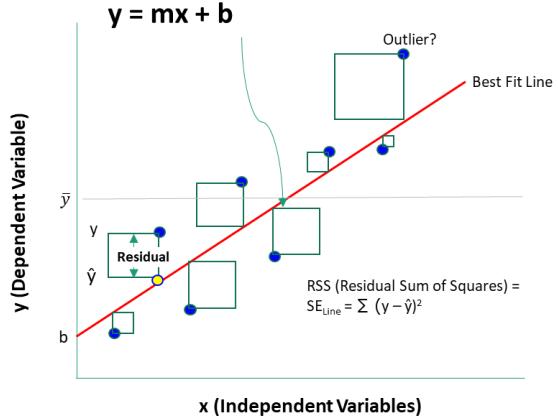
Tree Bagging



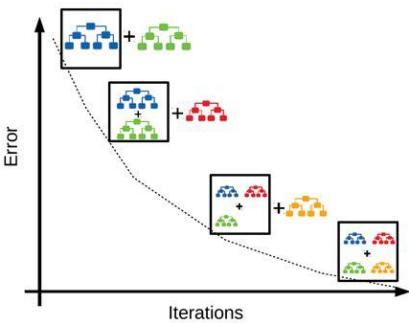
Neural Net



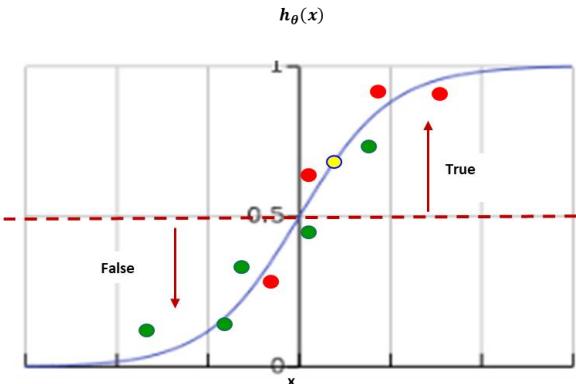
Linear Regression



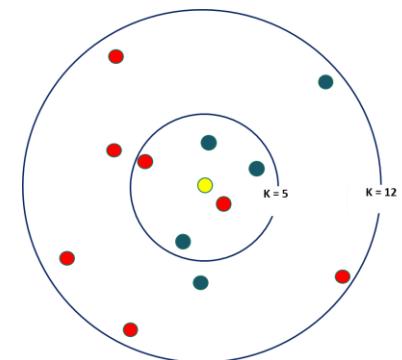
Tree Boosting



Logistic Regression



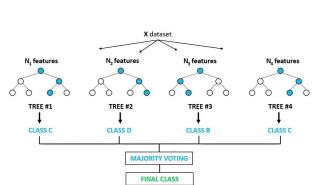
KNN



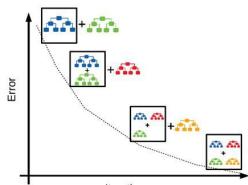
Hundreds of Methods  
are Available to  
Practitioner

# Method Tuning

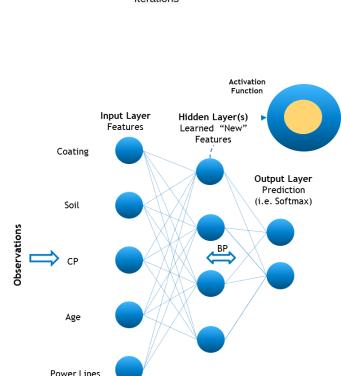
## Open-Source Methods & Hyper-Parameters



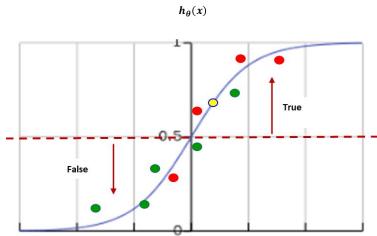
- Number Trees
- Tree Depth
- Min Observations
- Stop Criteria



- Number Trees
- Tree Depth
- Min Observations
- Stop Criteria

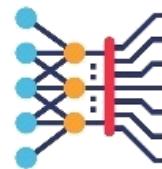


- Layers
- Activation Function
- Learning Rate



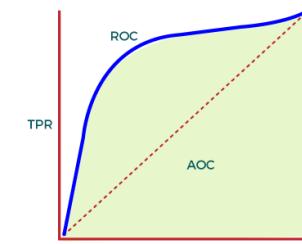
- Solver
- Regularization

## Model



Final Model uses One Method with Tuned Parameters & Acceptable Performance

## Performance



# Domain Experts FAQ

- Are Machine Learned Models an Improvement Over Deterministic Models?
- Do I have Enough of the Right Data?
- Are Patterns Inferential or Predictive? What's the Difference?
- Does the Model Meet Domain Expert Review?
- What Assets can I Apply the Learned Model?
- Is Performance Acceptable for Production Use?

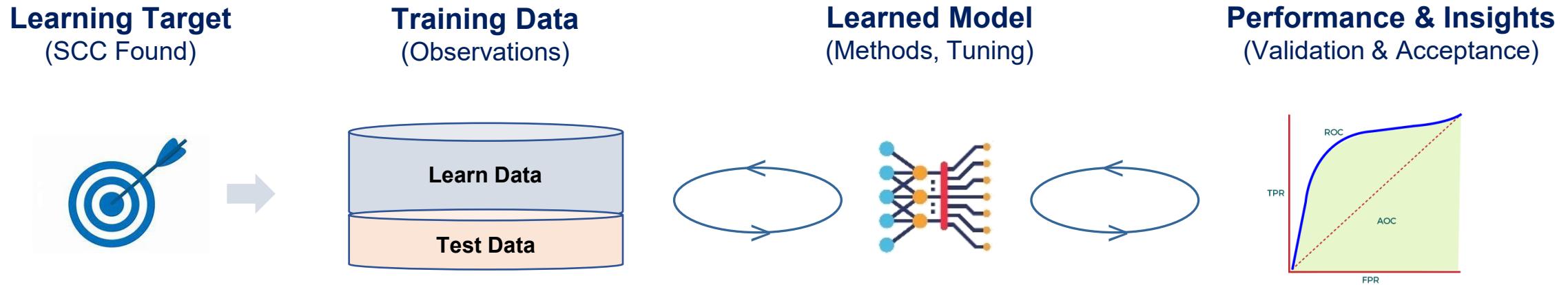


# **Stress Corrosion Cracking**

**Classification  
Model Example**



# Machine Learning Process



**Classification – Find\Learn Pattern to Predict Categorical Values**

# Classification Intuition

Learning Observations are  
Points in n-Dimensional  
Vector Space

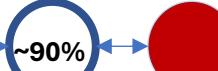
Learning Observation  
No SCC



New Points  
What is Probability of  
Corrosion?



Learning Observation  
Yes SCC



No Corrosion <---- Threshold ----> Yes Corrosion

How do you make the class call?

# Model Performance

## Two-Class Performance Learning Data Example:

- Joints of Pipe = 100
- Joints with Defects = 10
- Joints without Defects = 90

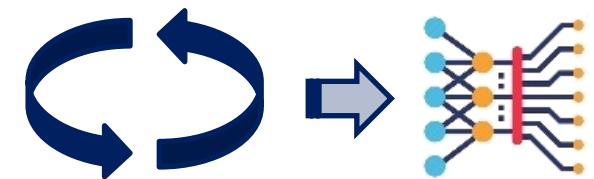
| Overall Accuracy<br>89%         | Actual<br>(No Defects = 90)  | Actual<br>(Defects = 10)       |                    |
|---------------------------------|------------------------------|--------------------------------|--------------------|
| Prediction<br>(No Defects = 81) | 80<br>(TN = true negatives)  | 1<br>(FN = false negatives)    |                    |
| Prediction<br>(Defects = 19)    | 10<br>(FP = false positives) | 9<br>(TP = true positives)     | 47%<br>(precision) |
|                                 | 89%<br>(specificity)         | 90%<br>(sensitivity or recall) |                    |

# Training Data

Learning Target

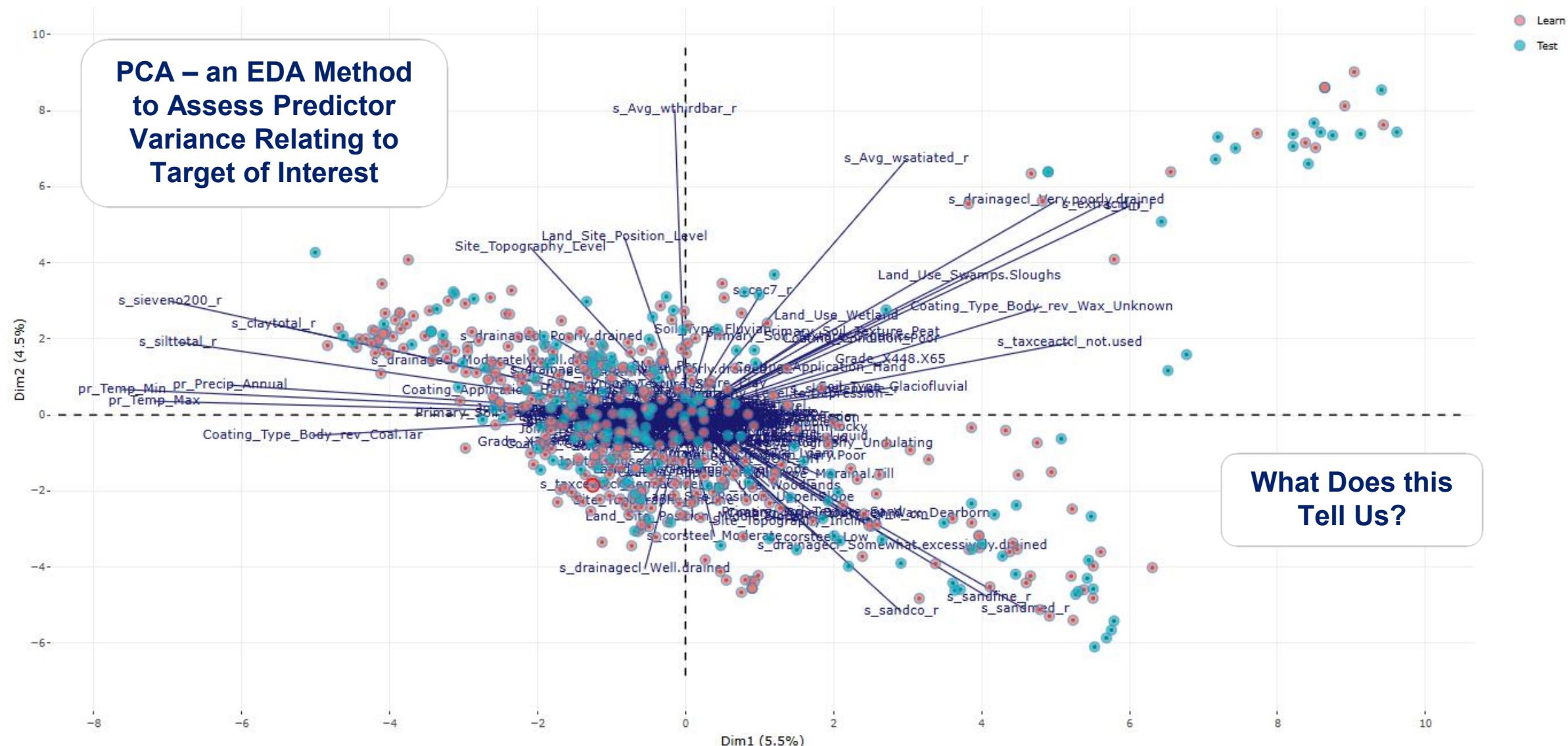
| SCC | Predictors        |                       |            |                   |                  |                   |
|-----|-------------------|-----------------------|------------|-------------------|------------------|-------------------|
|     | Coating_Condition | Coating_Type_Body_rev | cp_mv_mean | Depth_of_Cover_ft | pr_Precip_Annual | s_Avg_wthirdbar_r |
|     | All               | All                   | All        | All               | All              | All               |
| No  | Poor              | No Data               | -1,578.00  | 2.30              | 32.00            | 16.32             |
| No  | Poor              | Wax_Unknown           | -1,253.00  | 6.00              | 31.00            | 39.73             |
| No  | Well              | Asphalt               | -1,654.00  |                   | 32.00            | 19.30             |
| No  | Poor              | Wax_Unknown           | -1,385.00  | 5.00              | 37.00            | 32.20             |
| No  | Poor              | Wax_Unknown           | -1,383.00  | 2.67              | 37.00            | 32.20             |
| Yes | Well              | Wax_Unknown           | -1,240.00  |                   | 31.00            | 22.42             |
| Yes | Well              | Wax_Unknown           | -1,318.00  |                   | 31.00            | 54.50             |
| No  | Well              | Wax_Unknown           | -1,860.00  | 3.00              | 32.00            | 20.80             |
| No  | Well              | Wax_Unknown           | -1,728.00  | 5.00              | 32.00            | 23.55             |
| No  | Excellent         | Asphalt               | -1,520.00  | 5.00              | 20.00            | 12.20             |
| No  | Well              | Wax_Unknown           | -1,725.00  | 5.00              | 32.00            | 18.73             |
| No  | Well              | Wax_Unknown           | -1,546.00  | 4.00              | 33.00            | 37.50             |
| No  | Well              | Wax_Unknown           | -1,717.50  | 5.00              | 32.00            | 18.73             |
| No  | Excellent         | Epoxy                 | -1,395.00  | 9.20              | 29.00            | 24.12             |
| No  | Fair              | Wax_Unknown           | -1,176.00  | 5.00              | 31.00            | 12.52             |
| No  | Fair              | Wax_Unknown           | -1,748.00  | 5.00              | 34.00            | 11.58             |
| No  | Fair              | Coal Tar              | -1,064.00  |                   | 44.00            | 13.50             |

Training Data



# Principal Component Analysis

## PCA - Biplot

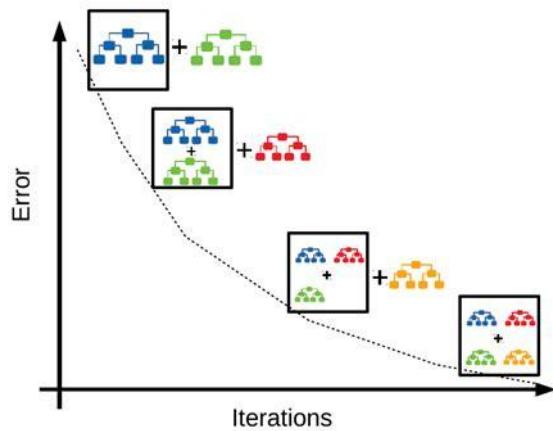


# What Does this Tell Us?

# Learned Model



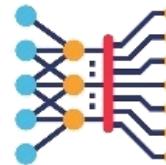
## Gradient Boosted Tree



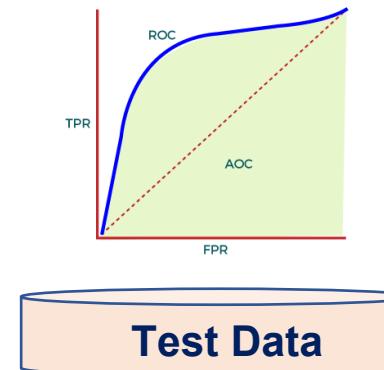
## Tuned Hyper-Parameters

|                |        |
|----------------|--------|
| mtry           | 26     |
| trees          | 960    |
| min_n          | 4      |
| tree_depth     | 14     |
| learn_rate     | 0.0013 |
| loss_reduction | 0      |
| sample_size    | 0.2247 |
| stop_iter      | 5      |

## Model



## Performance



# Candidate Model Performance

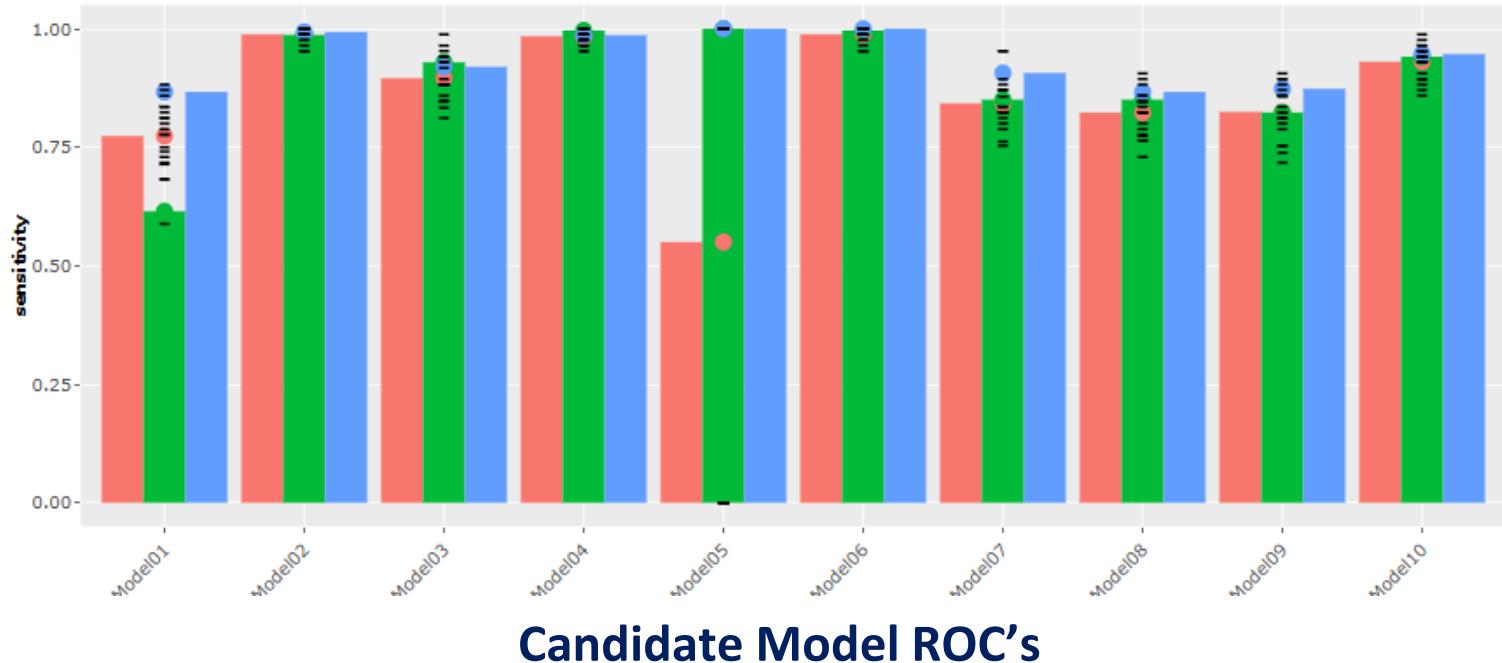
## Metrics

- Accuracy
- Sensitivity
- Specificity
- AUC

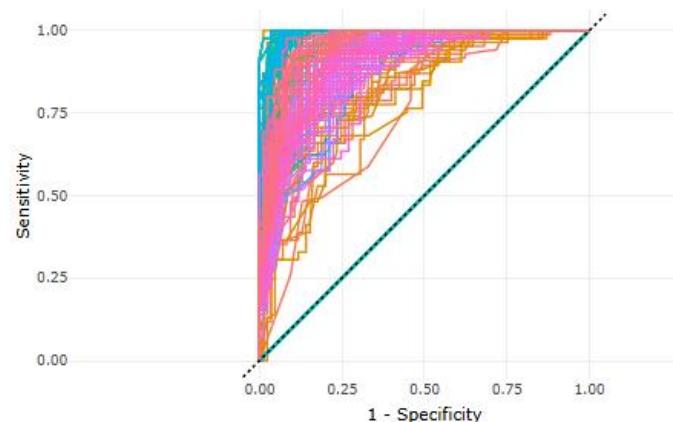
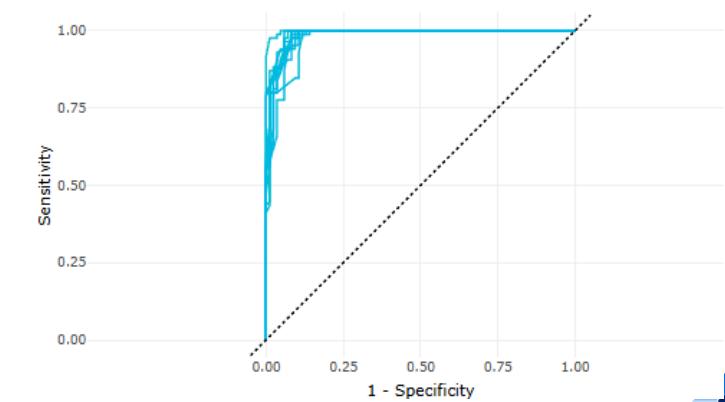
## Selected Model

- Xgboost Method
- 2000 Trees
- 5 Depth
- 2 Min Obs
- .0001 Loss

Candidate Model Performance (Resample, Learn, Test)

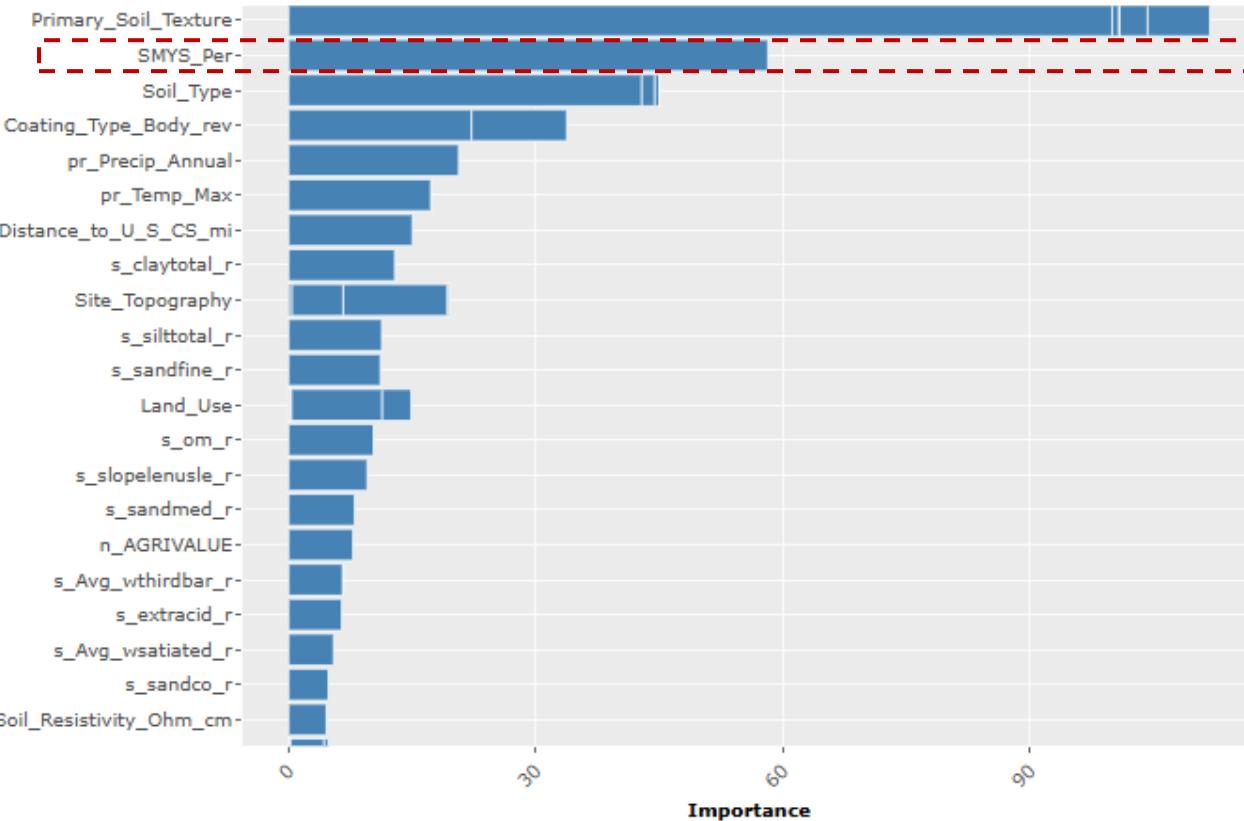


Candidate Model ROC's



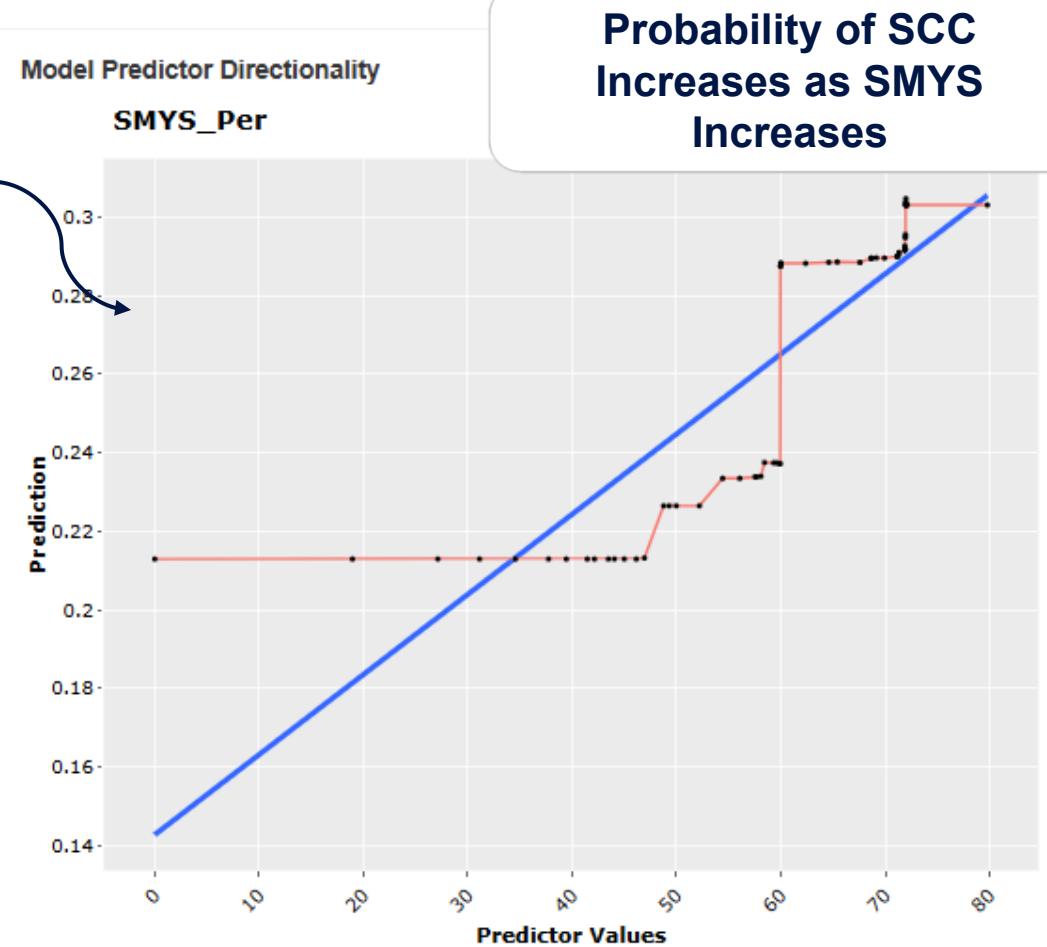
# Model Weights

Model Predictor Importance

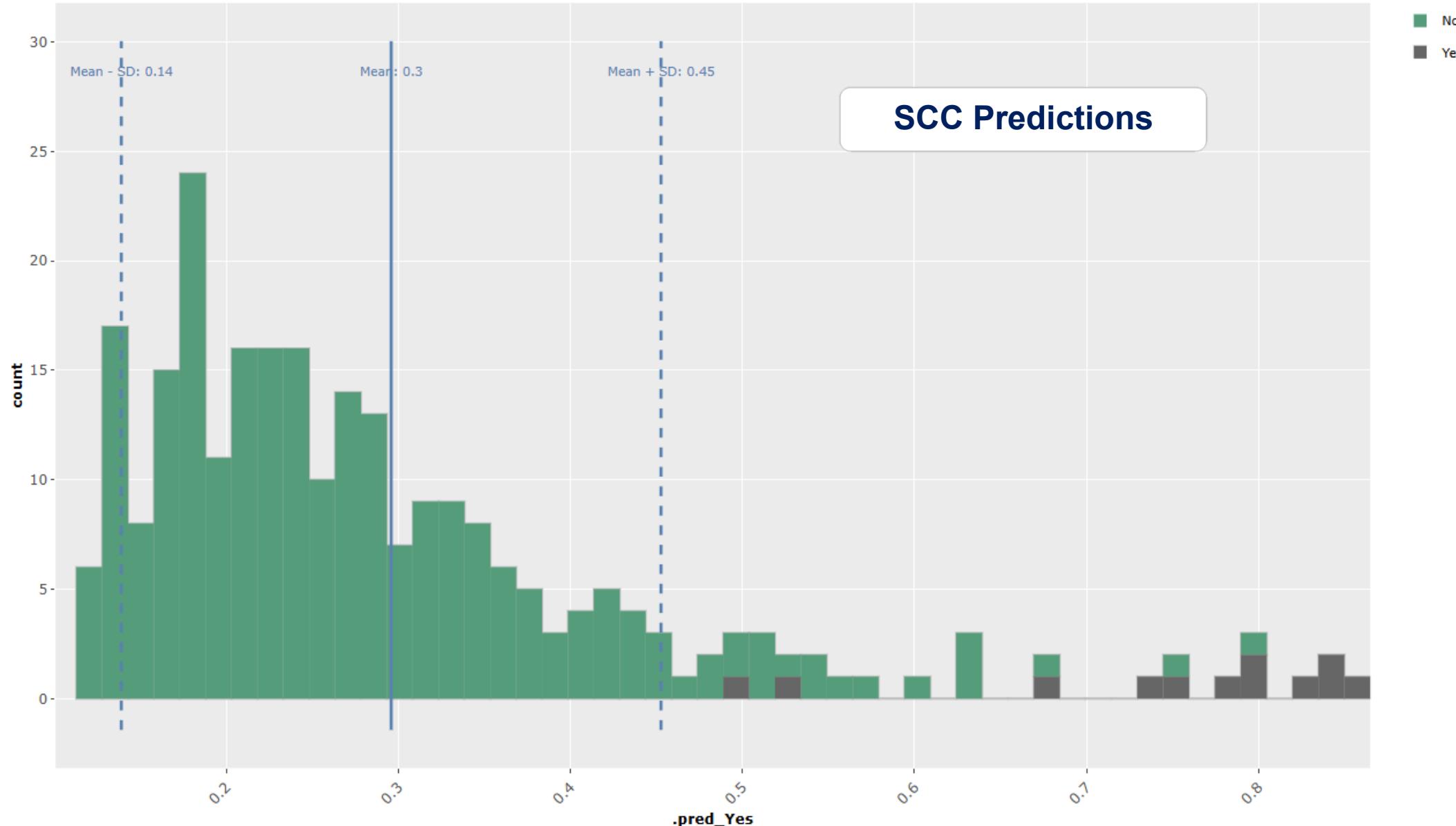


Model Predictor Directionality

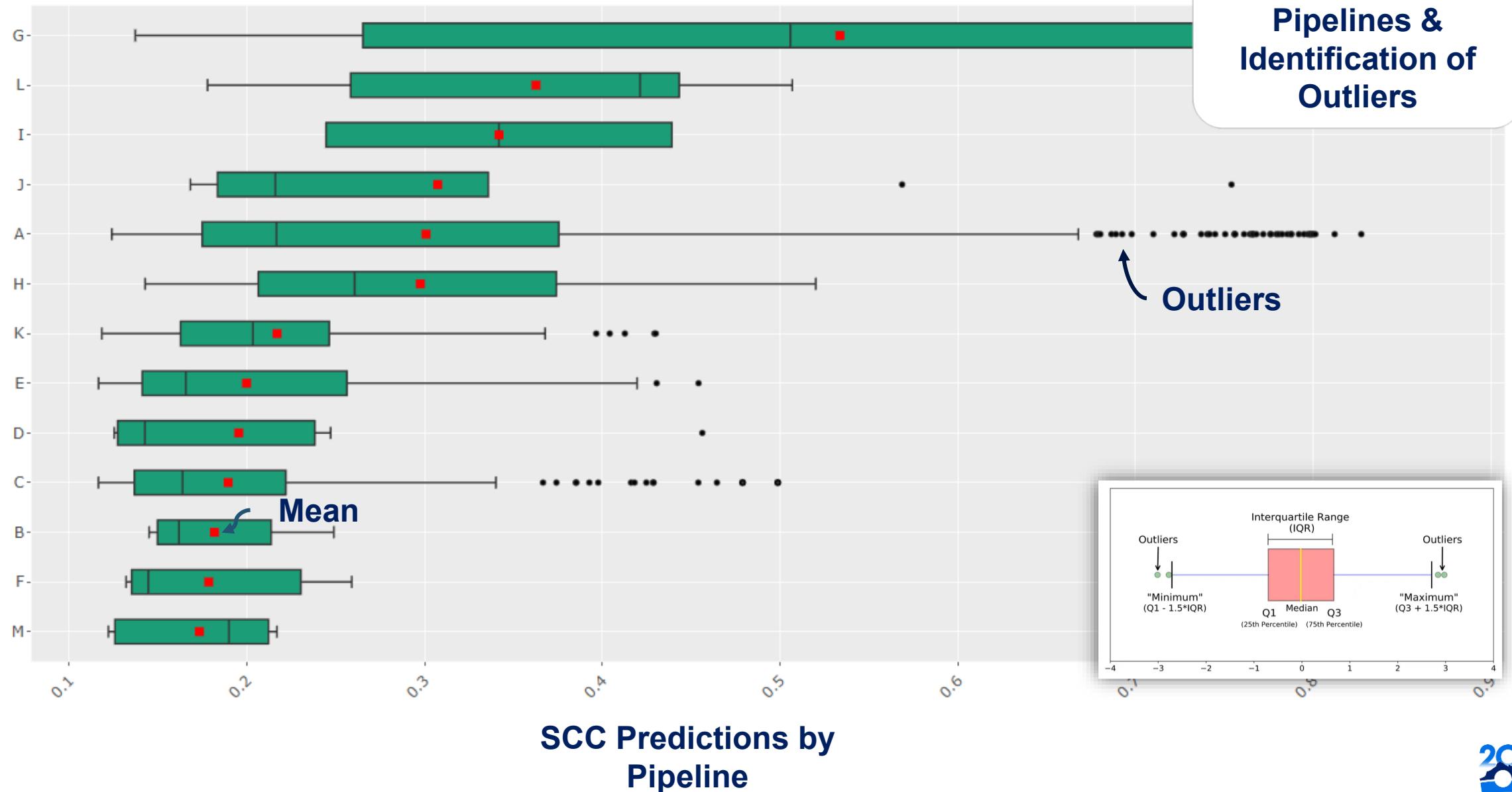
SMYS\_Per



# Typical ML Output



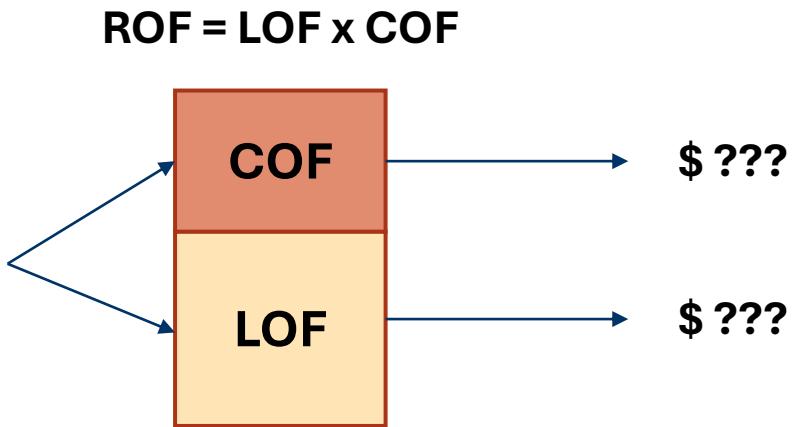
# Model Application



# Model Explainability

**Example:**

$$\mathbf{\$120 = 60\% \times \$200}$$

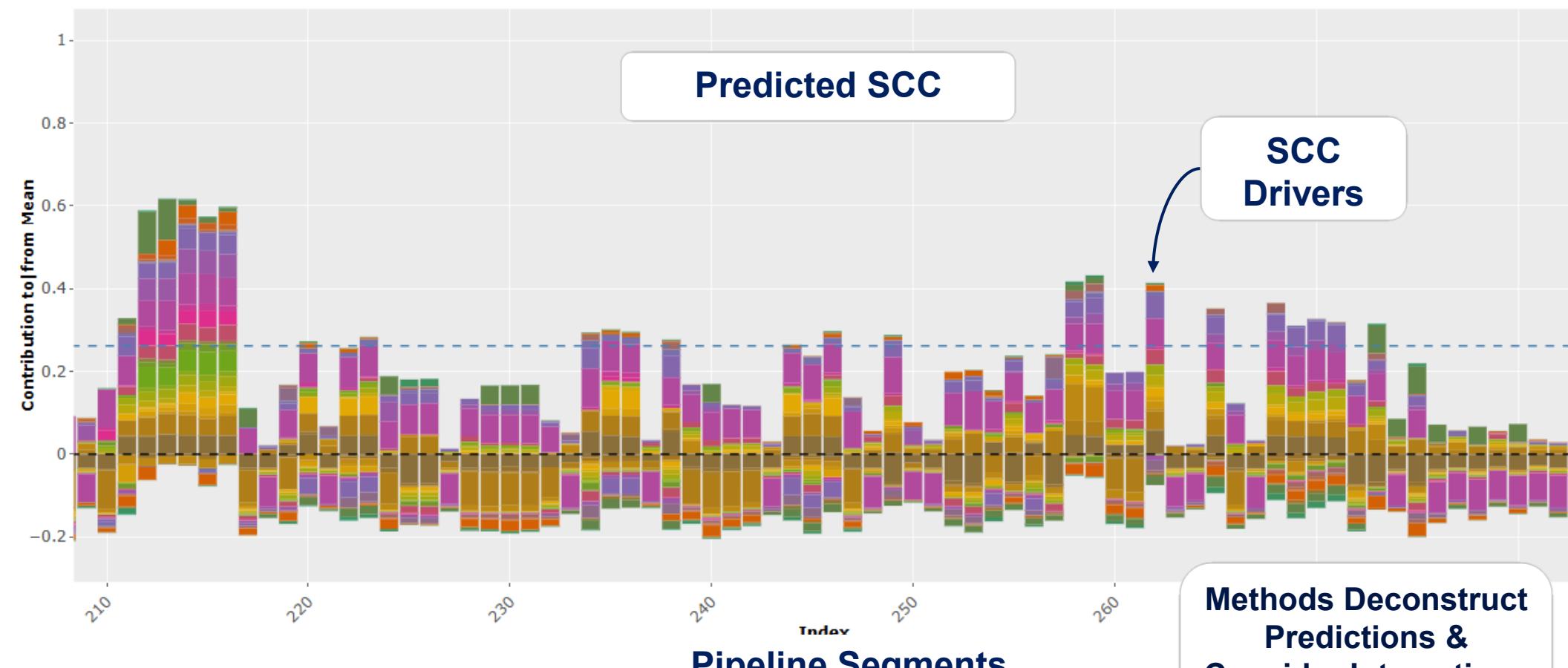


- What is the Contribution of LOF to ROF in absolute terms?
- What is the Contribution of COF to ROF in absolute terms?
- Is it useful to know these contributions?
- What if you have a risk algorithm with 100 predictors & non-linearities?
- How do you know what each factor contributes?

# Results Explanation



Predictor Influence by Record - Break\_Down



# QRA – Classification Time Independent

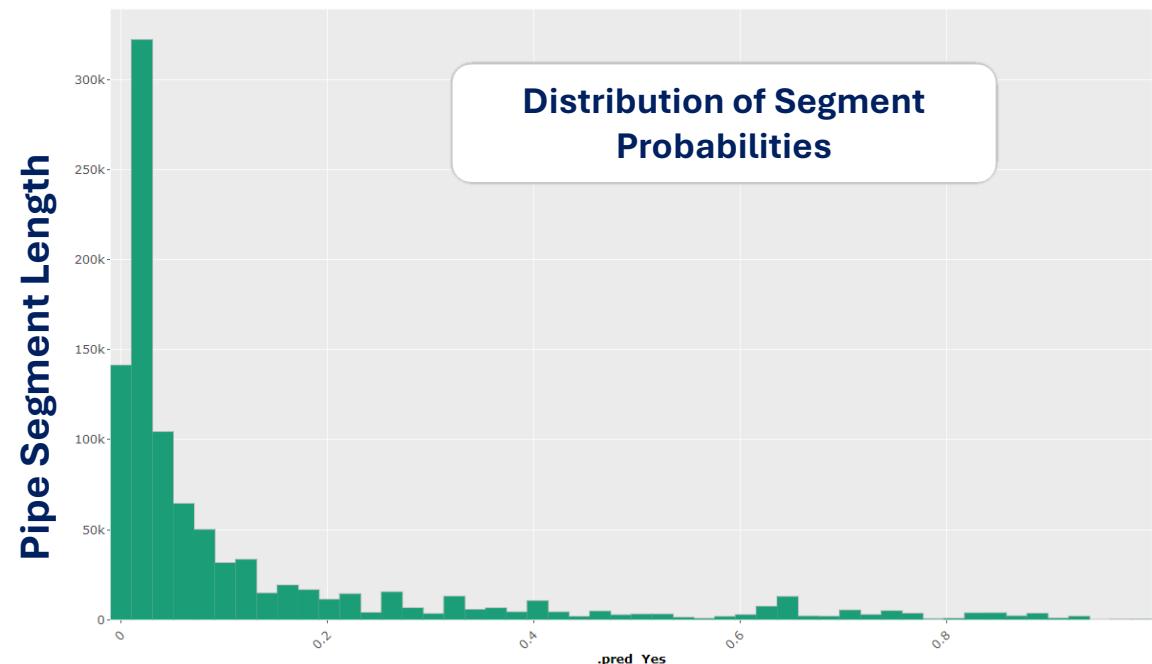


**NPV( $\Sigma$  [Probability x Event Rate (#/length-yrs) x Event Cost (\$/Event)], Yrs)**

- Consider Resistance (pipe WT, toughness)
- Normalize to Incident & Consequence Event Distributions (P50\P99)



Histogram (Continuous Data)

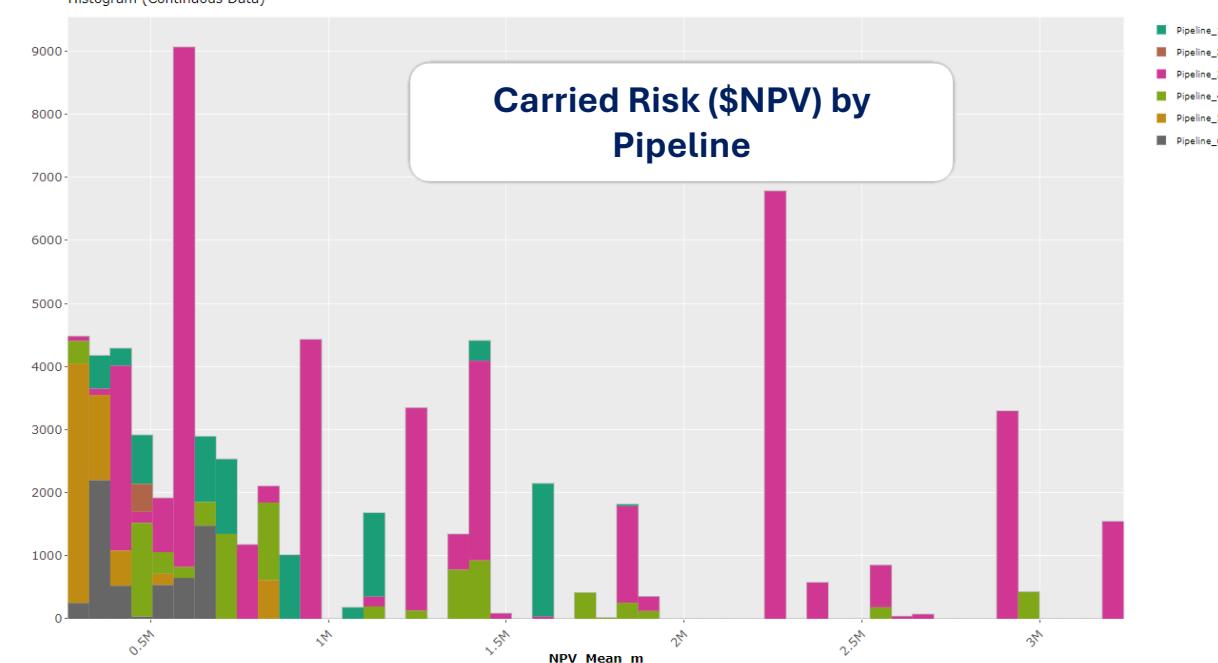


Probability of Third-Party Damage



Machine Learned Results

Histogram (Continuous Data)



Monetized Carried Risk by Pipeline



QRA Monetized Risk

# Questions?

# Corrosion Growth Rate

Regression Model  
Example

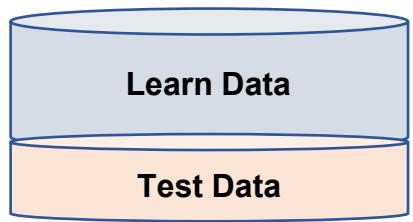


# Machine Learning Process

**Learning Target**  
(EC CGR)



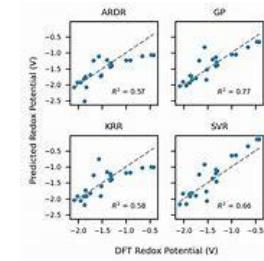
**Training Data**  
(Observations)



**Learned Model**  
(Methods, Tuning)

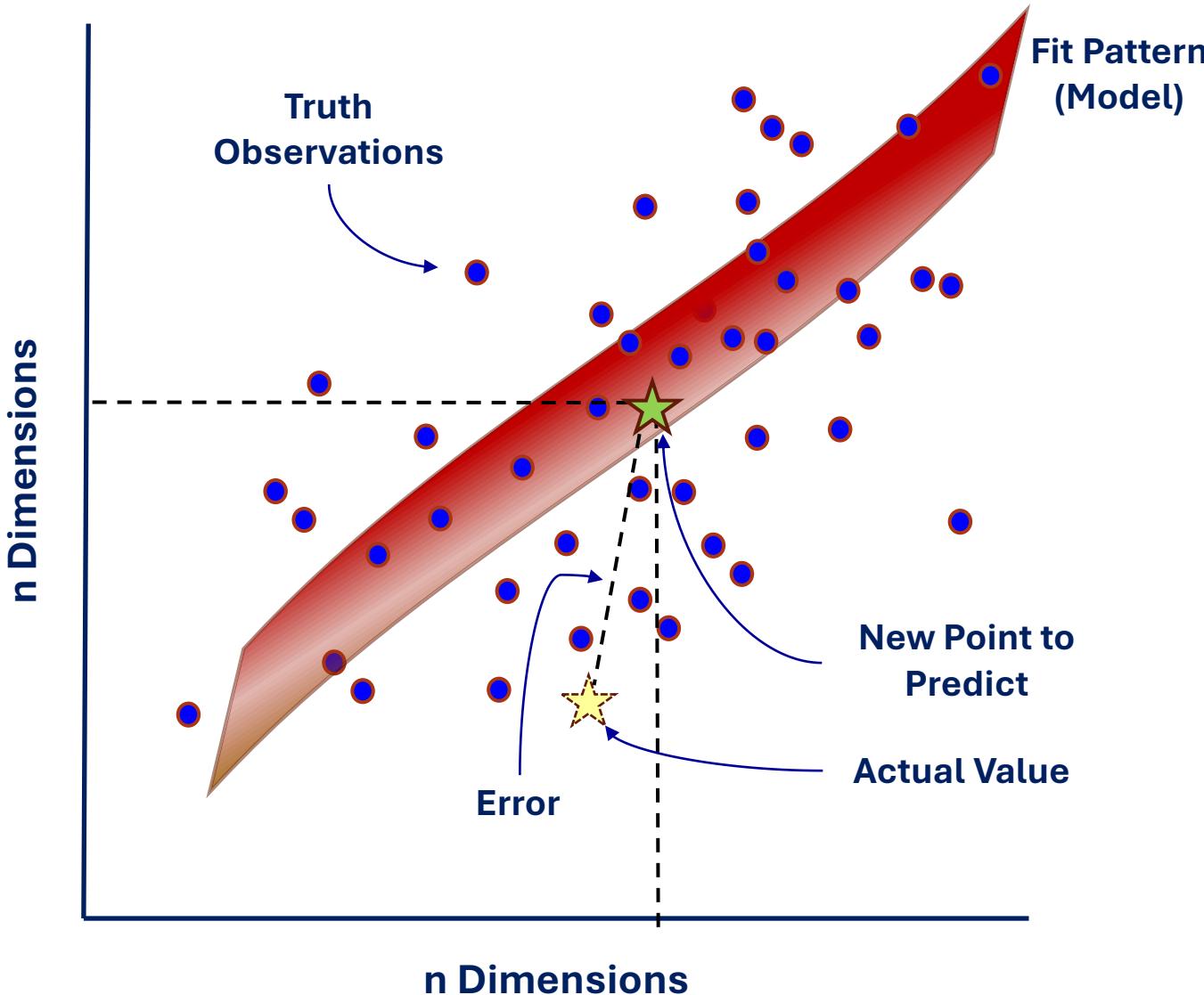


**Performance & Insights**  
(Validation & Acceptance)



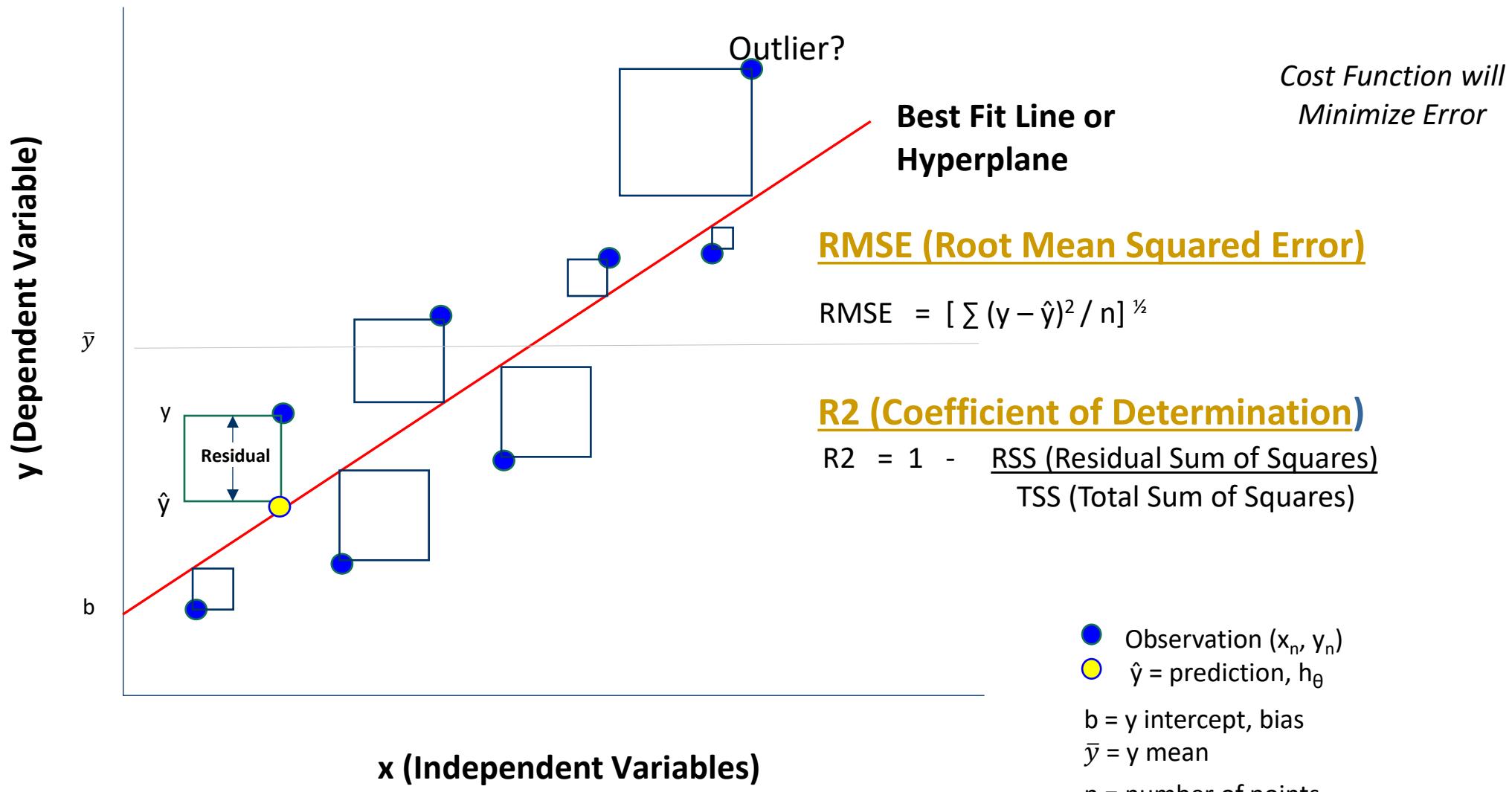
**Regression – Find\Learn Pattern to Predict Numerical Values**

# Regression Intuition



Learning Observations  
are Points in n-  
Dimensional Vector  
Space

# Model Performance

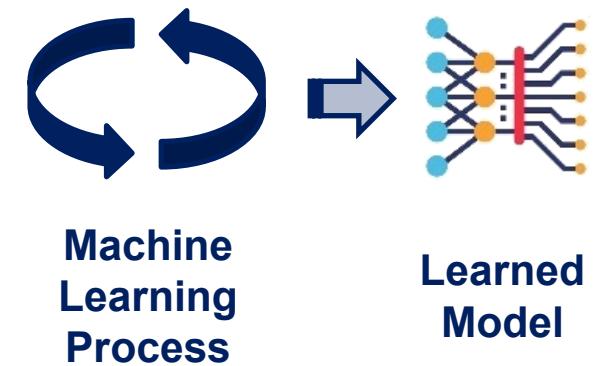


# Training Data

**Learning Target**

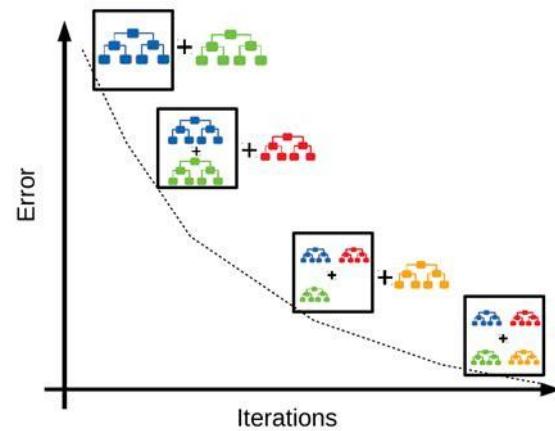
|      | EC_mpy | CP_Off_Change    | Dist_Road_Agg | DOC  | n_AGRIVALUE | Nominal_OD     | Pipe_Coating | Pipe_Seam | st_SOIL_cor |
|------|--------|------------------|---------------|------|-------------|----------------|--------------|-----------|-------------|
|      | All    | All              | All           | All  | All         | All            | All          | All       | All         |
|      | -0.03  | Limited_Impact   | 24.00         | 0.00 | 30.00       | ASPHALT_ENAMEL | DSAW         | High      |             |
| 2.05 | -0.01  | Out_Of_Range     | 30.00         | 0.00 | 30.00       | TGF_E          | DSAW         | Moderate  |             |
| 2.00 | -0.02  | Out_Of_Range     | 24.00         | 0.00 | 30.00       | TGF_E          | DSAW         | Moderate  |             |
| 2.00 | -0.03  | Limited_Impact   | 24.00         | 0.00 | 30.00       | TGF_E          | DSAW         | Moderate  |             |
| 2.00 | -0.03  | Out_Of_Range     | 60.00         | 0.00 | 18.00       | TGF_A          | DSAW         | High      |             |
| 2.00 | -0.03  | Out_Of_Range     | 63.00         | 0.00 | 18.00       | TGF_A          | DSAW         | High      |             |
| 1.90 | -0.07  | Potential_Impact | 24.00         | 0.00 | 30.00       | TGF_E          | DSAW         | Moderate  |             |
| 1.85 | -0.03  | Out_Of_Range     | 18.00         | 0.00 | 30.00       | TGF_E          | DSAW         | Moderate  |             |
| 1.80 | 0.02   | Limited_Impact   | 24.00         | 0.00 | 18.00       | FBE            | DSAW         | High      |             |
| 1.75 | -0.03  | Limited_Impact   | 24.00         | 0.00 | 30.00       | TGF_H          | DSAW         | Moderate  |             |
| 1.70 | -0.07  | Limited_Impact   | 24.00         | 0.00 | 30.00       | TGF_E          | DSAW         | Moderate  |             |
| 1.70 | -0.07  | Limited_Impact   | 30.00         | 0.00 | 30.00       | TGF_E          | DSAW         | Moderate  |             |
| 1.70 | -0.08  | Potential_Impact | 24.00         | 0.00 | 30.00       | TGF_E          | DSAW         | Moderate  |             |
| 1.70 | -0.08  | Out_Of_Range     | 24.00         | 0.00 | 30.00       | TGF_E          | DSAW         | Moderate  |             |
| 1.70 | -0.07  | Out_Of_Range     | 24.00         | 0.00 | 30.00       | TGF_E          | DSAW         | Moderate  |             |

Training Data



# Learned Model

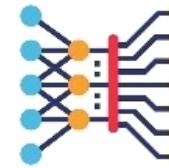
## Gradient Boosted Tree



## Tuned Hyper-Parameters

|                |        |
|----------------|--------|
| mtry           | 26     |
| trees          | 960    |
| min_n          | 4      |
| tree_depth     | 14     |
| learn_rate     | 0.0013 |
| loss_reduction | 0      |
| sample_size    | 0.2247 |
| stop_iter      | 5      |

## Model



## Performance

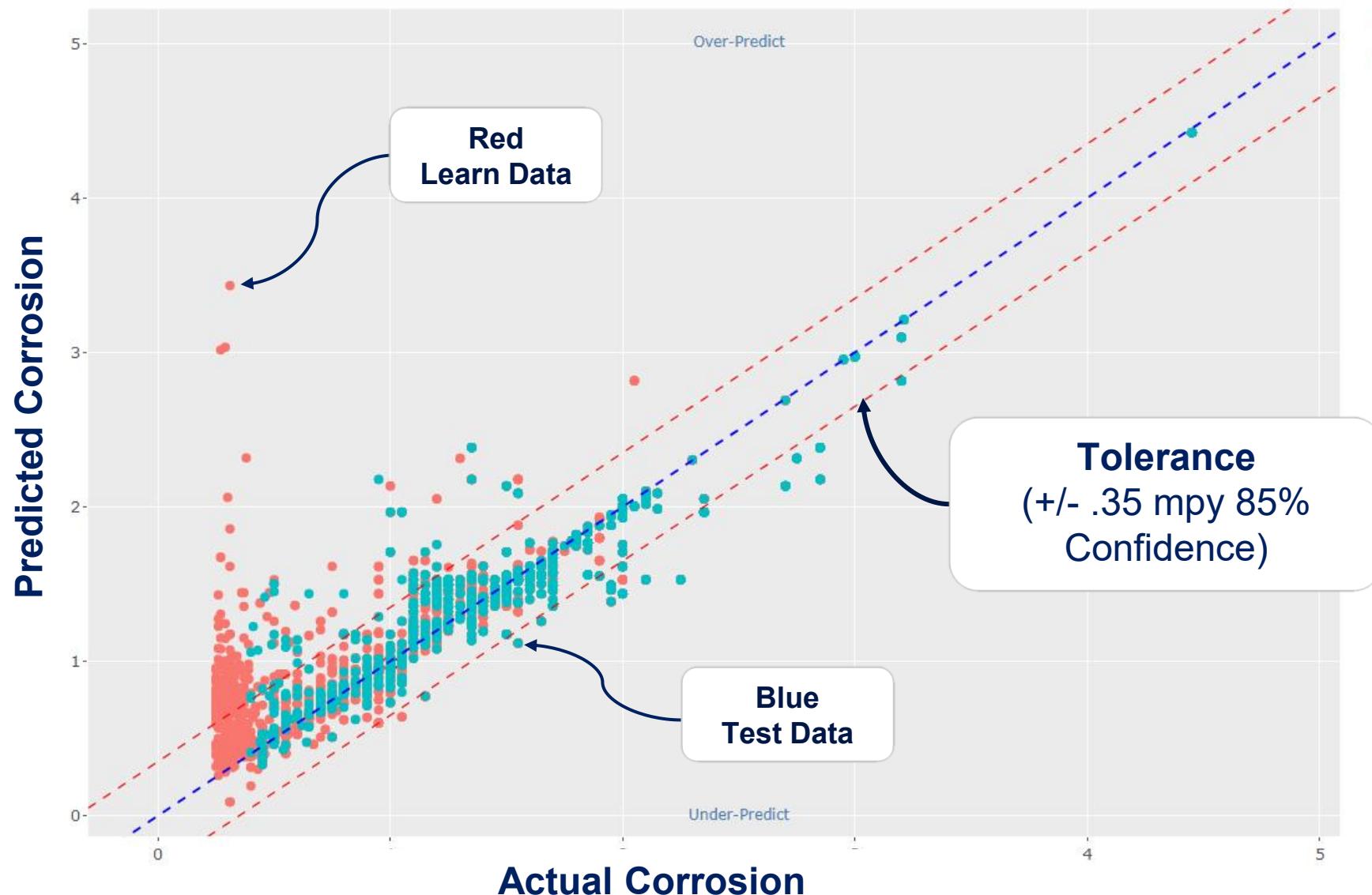
|      |        |
|------|--------|
| rmse | 0.4634 |
| rsq  | 0.8903 |
| mae  | 0.3338 |

Test Data

# Model Performance

**Metrics**

- RMSE
- R2
- MAE



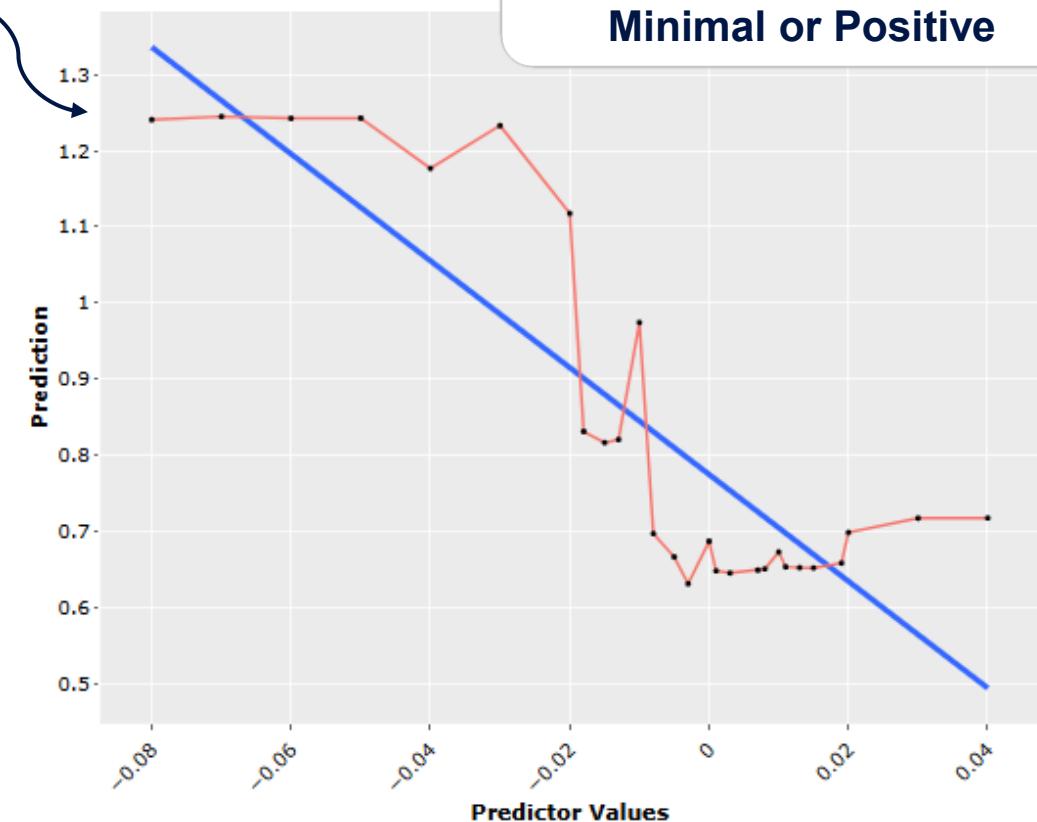
# Model Weights

Model Predictor Importance



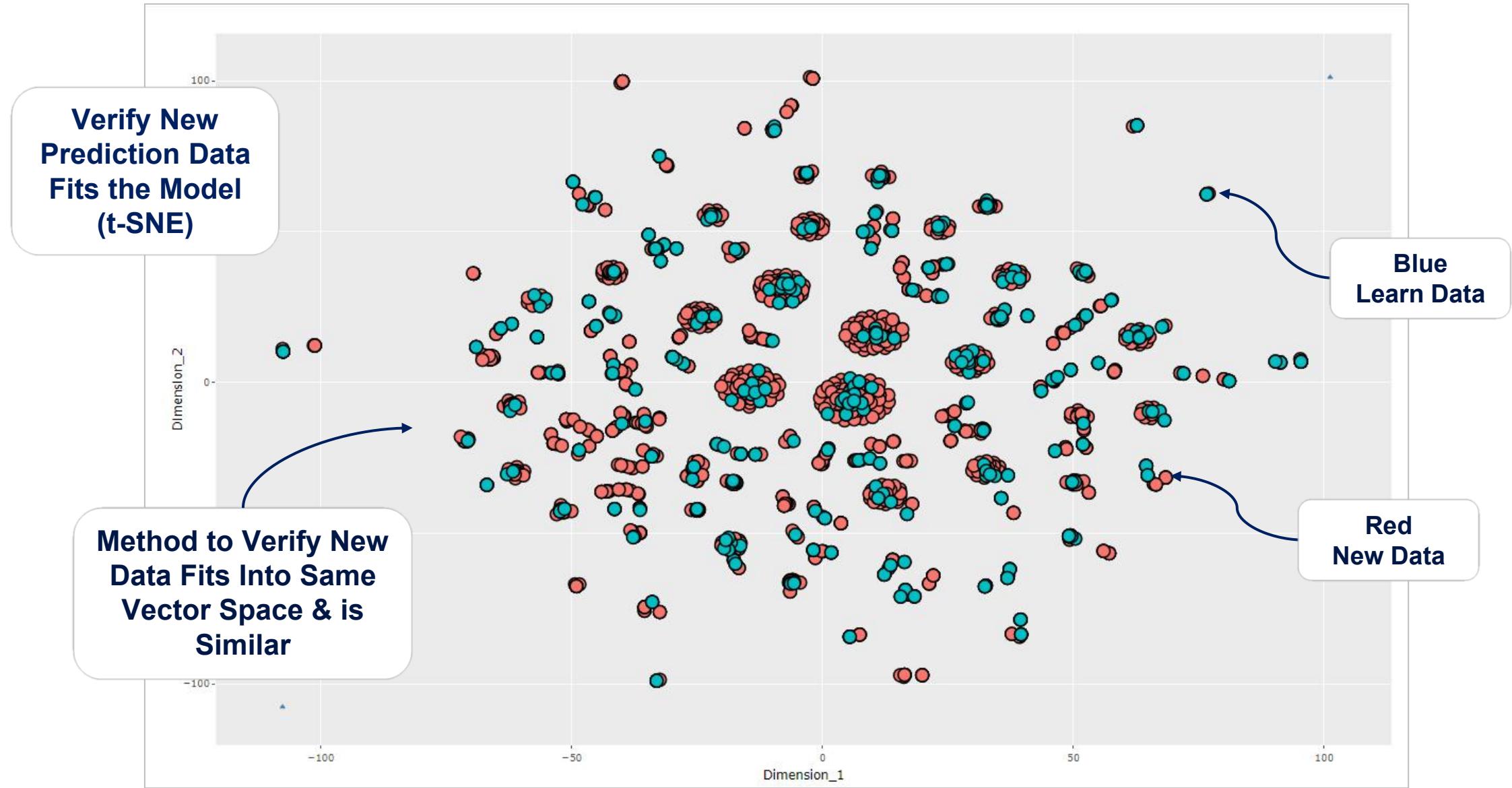
Model Predictor Directionality

CP\_Off\_Change

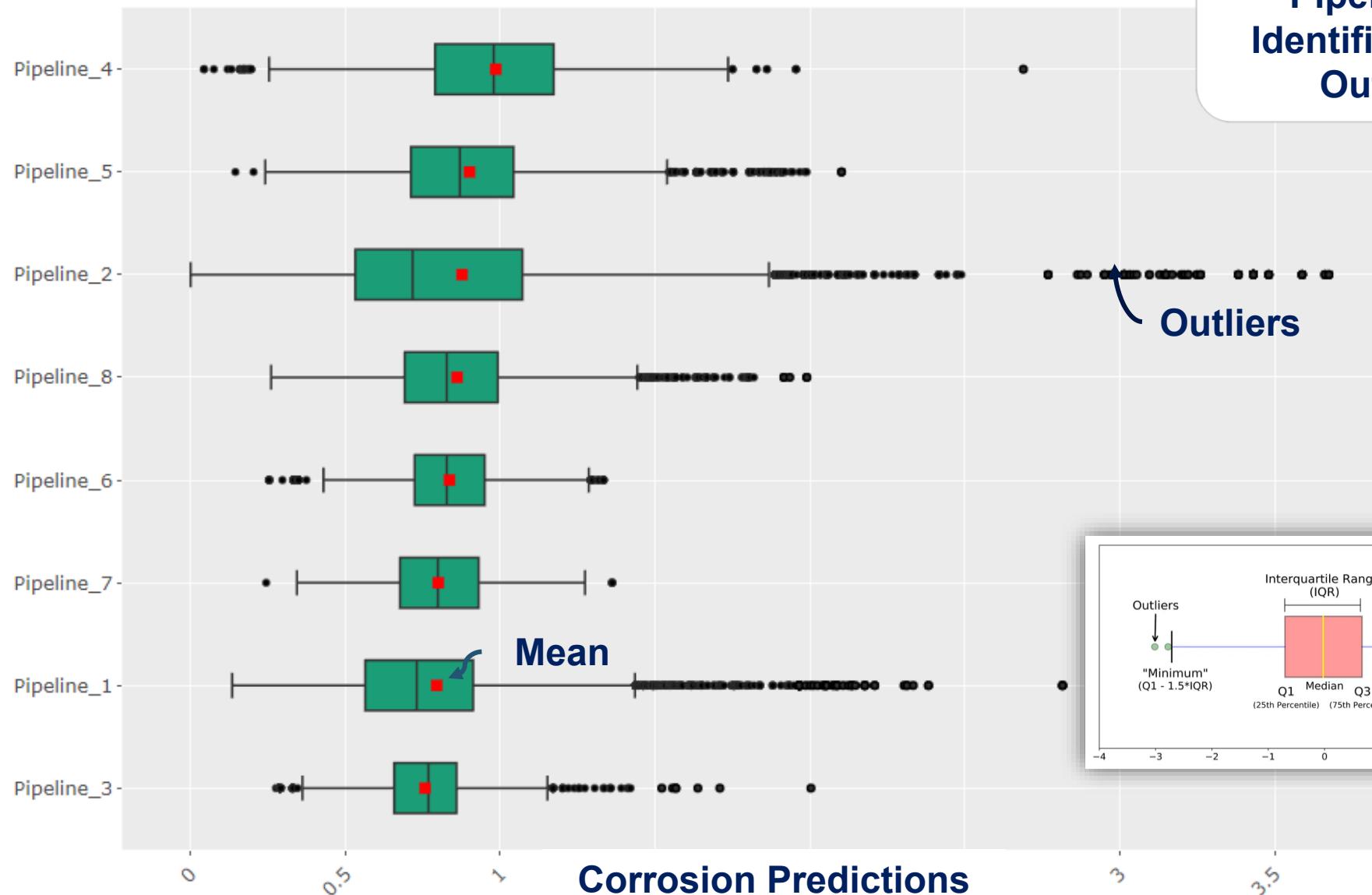


Corrosion mpy Decreases as CP Changes are Minimal or Positive

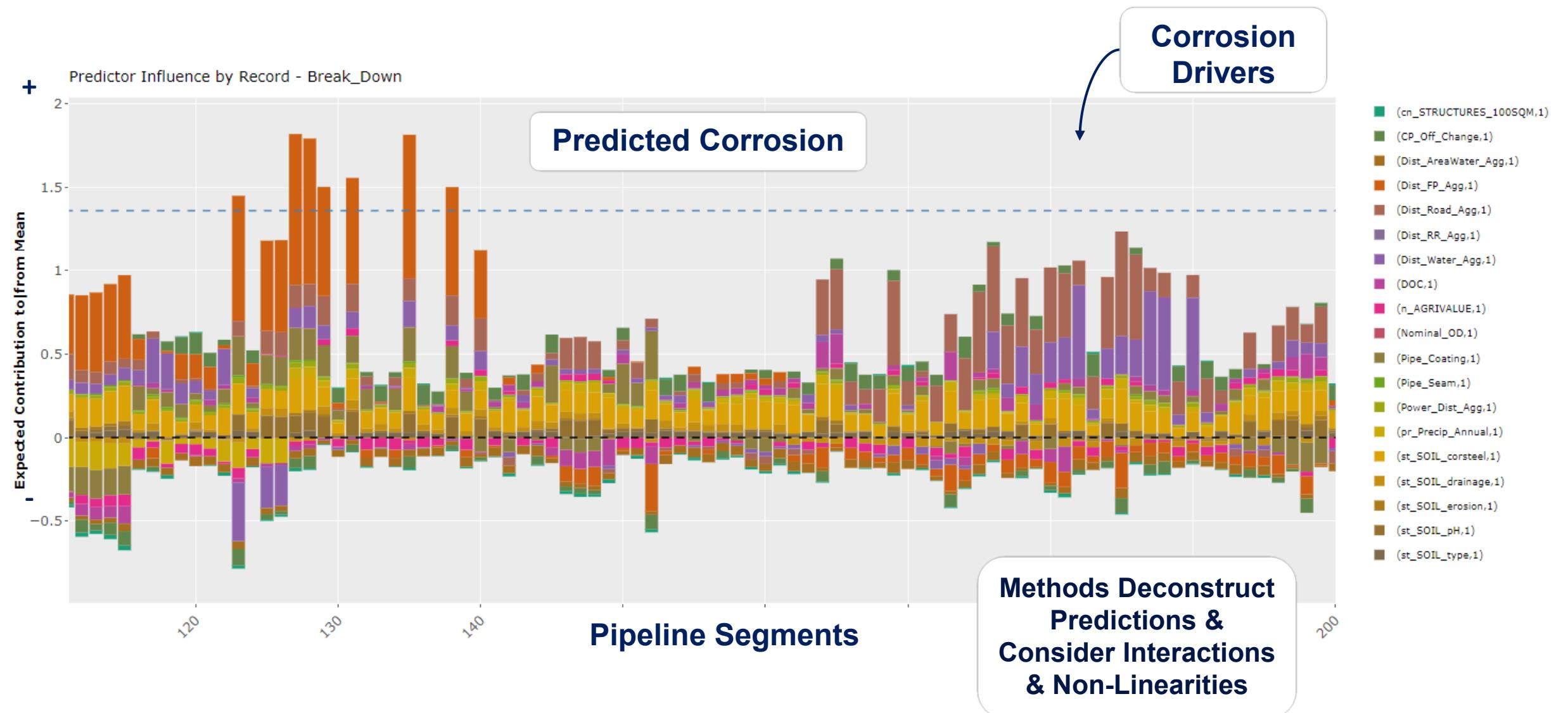
# Model Applicability



# Prediction Results



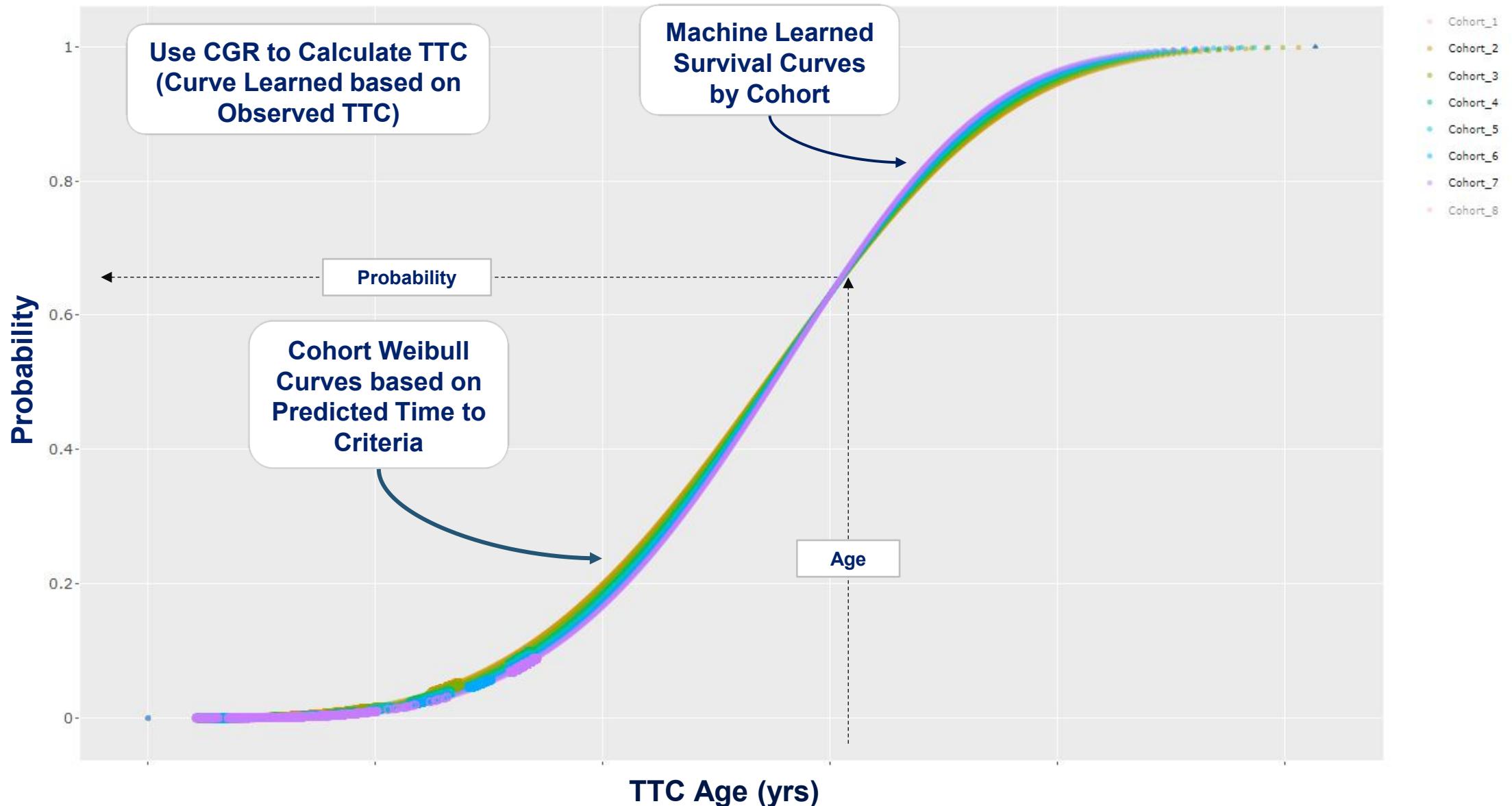
# Results Explanations



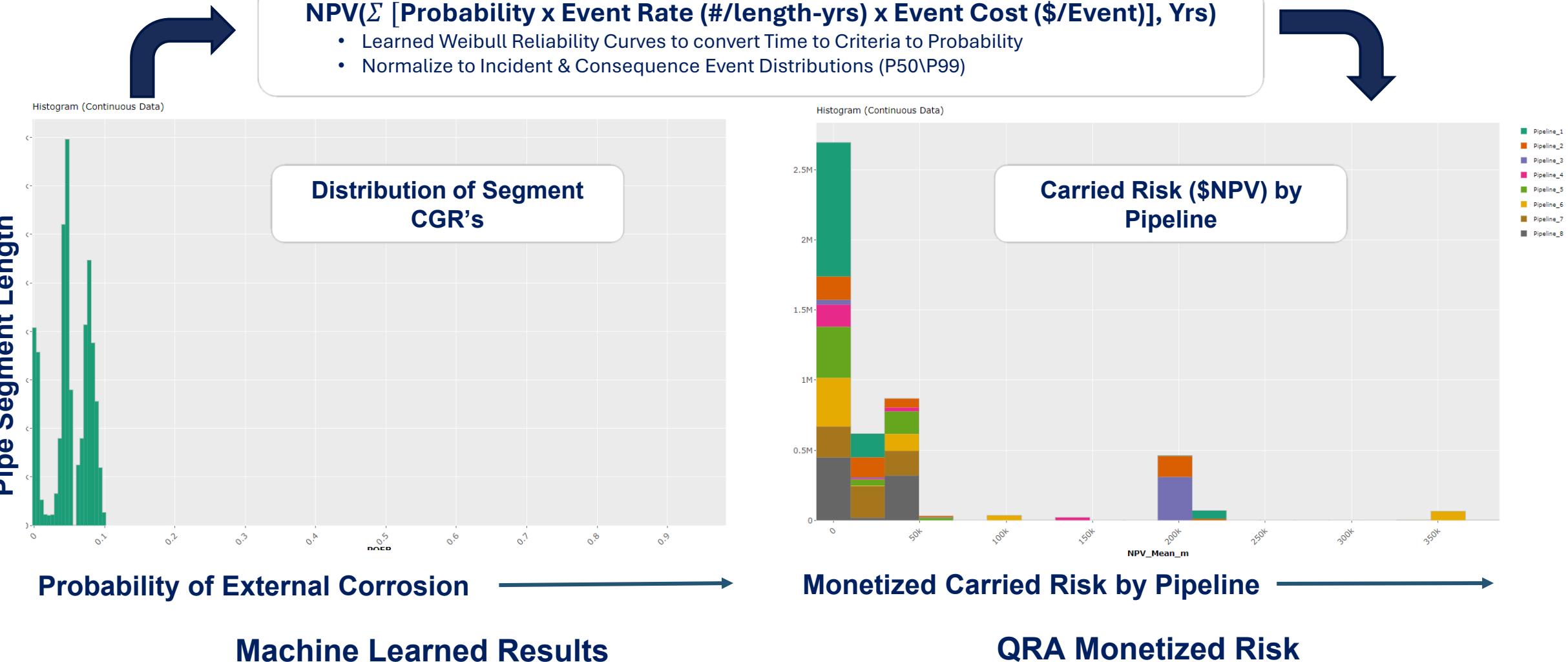
# CGR to Probability



Microsoft Excel  
Worksheet



# QRA – Regression Time Dependent



# Questions?

# Cathodic Protection Potentials

Time Series Model Example



# Machine Learning Process

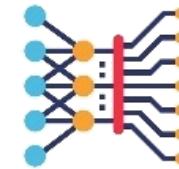
**Learning Target**  
(EC CGR)



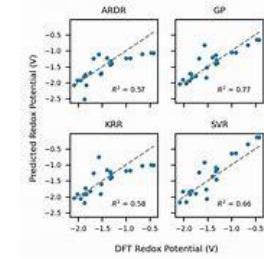
**Training Data**  
(Observations)



**Learned Model**  
(Methods, Tuning)



**Performance & Insights**  
(Validation & Acceptance)



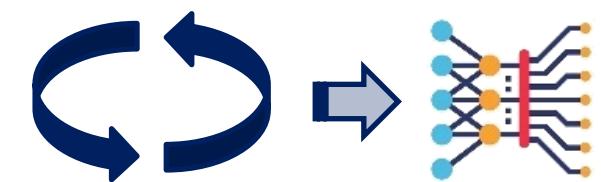
**Time Series – Find\Learn Pattern to Predict Numerical Values**  
**Considers Seasonality Effects Using Slices of Time**

# Training Data

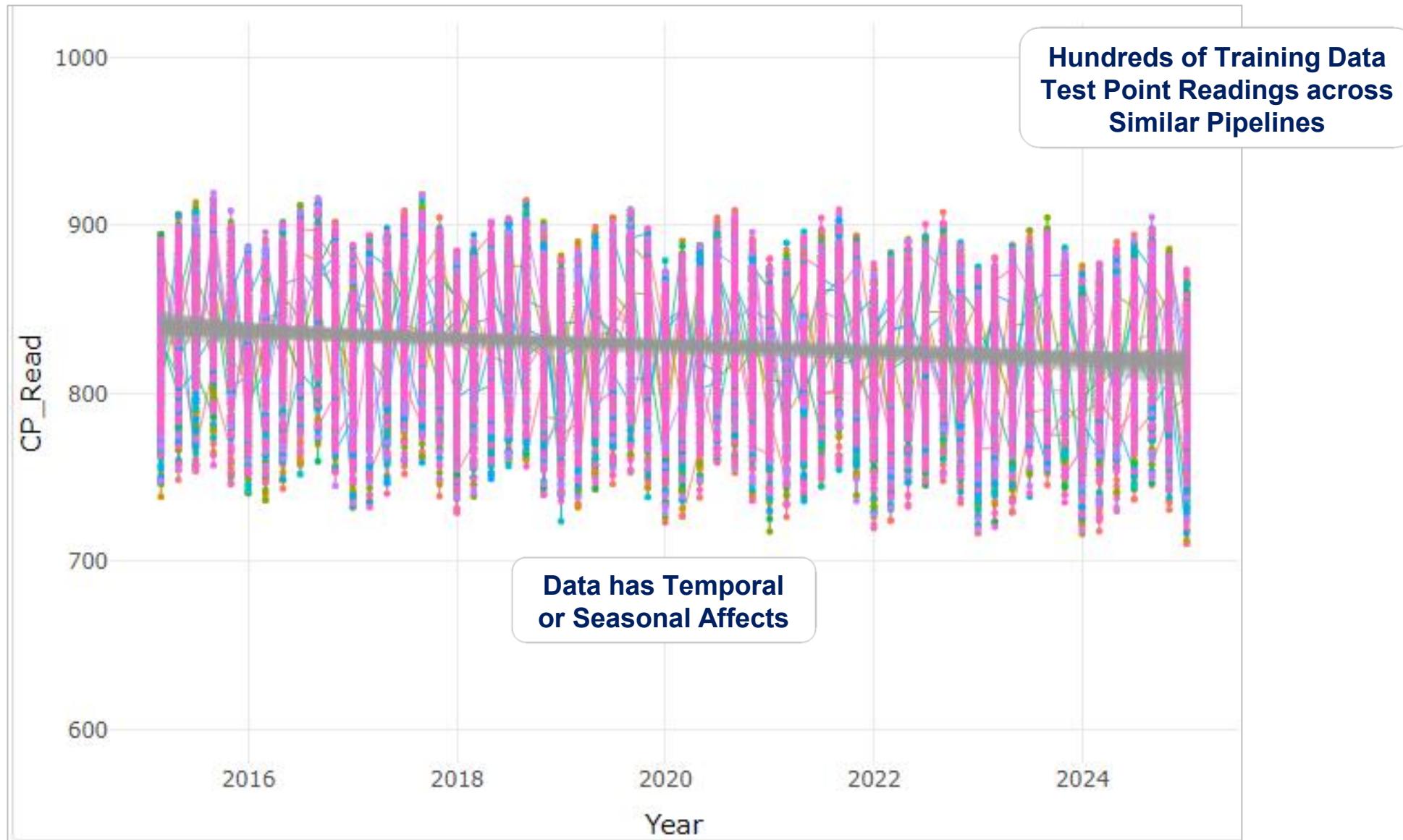
## Predictors

| CP_Read | Date       | Pipe_Age | pr_Temp_Diff | Precip | st_SOIL_corsteel | st_SOIL_type | TS    |
|---------|------------|----------|--------------|--------|------------------|--------------|-------|
| 80      | 2015-09-01 | 60.00    | 23.00        | 30.00  | High             | Sand         | 3300  |
| 921.10  | 2015-09-01 | 77.00    | 23.00        | 30.00  | High             | Sand         | 28386 |
| 919.40  | 2015-09-01 | 77.00    | 23.00        | 30.00  | High             | Loam         | 22280 |
| 918.90  | 2016-09-01 | 77.00    | 22.00        | 30.00  | High             | Sand         | 30020 |
| 917.90  | 2016-09-01 | 59.00    | 23.00        | 30.00  | High             | Sand         | 1499  |
| 917.50  | 2015-09-01 | 60.00    | 23.00        | 30.00  | High             | Sand         | 5122  |
| 917.20  | 2016-09-01 | 77.00    | 22.00        | 30.00  | High             | Sand         | 30917 |
| 916.90  | 2015-09-01 | 77.00    | 22.00        | 30.00  | High             | Sand         | 30020 |
| 916.20  | 2017-09-01 | 21.00    | 22.00        | 30.00  | High             | Clay         | 31511 |
| 915.90  | 2016-09-01 | 77.00    | 22.00        | 30.00  | High             | Clay         | 21137 |
| 915.30  | 2017-09-01 | 77.00    | 23.00        | 30.00  | High             | Sand         | 32118 |
| 914.90  | 2016-09-01 | 33.00    | 23.00        | 30.00  | High             | Sand         | 26501 |
| 914.60  | 2017-09-01 | 59.00    | 23.00        | 30.00  | High             | Sand         | 1588  |
| 914.50  | 2015-09-01 | 59.00    | 23.00        | 30.00  | High             | Sand         | 2277  |
| 914.50  | 2017-09-01 | 77.00    | 23.00        | 30.00  | High             | Sand         | 24686 |
| 914.40  | 2016-09-01 | 77.00    | 23.00        | 30.00  | High             | Clay         | 24470 |

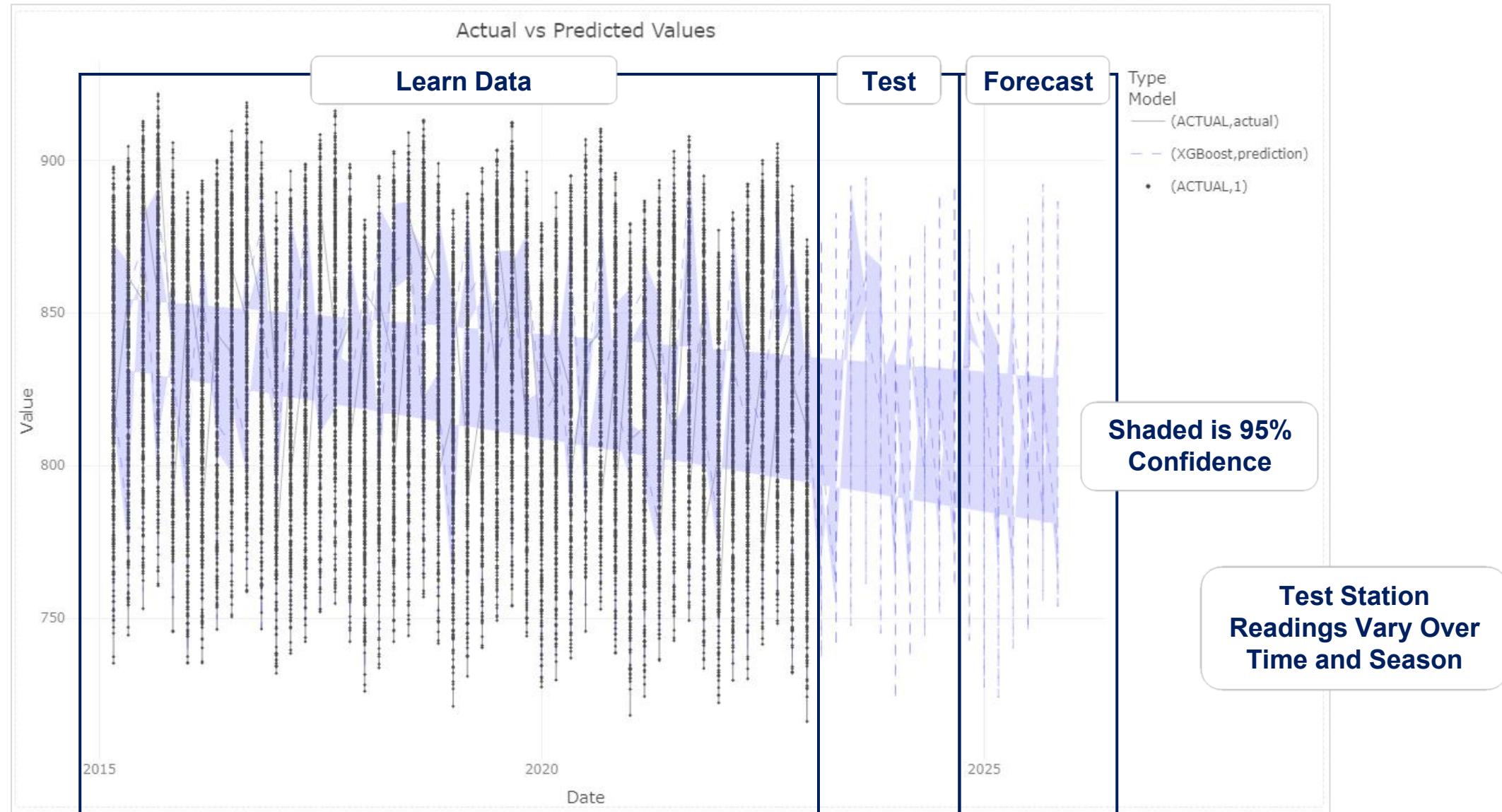
## Training Data



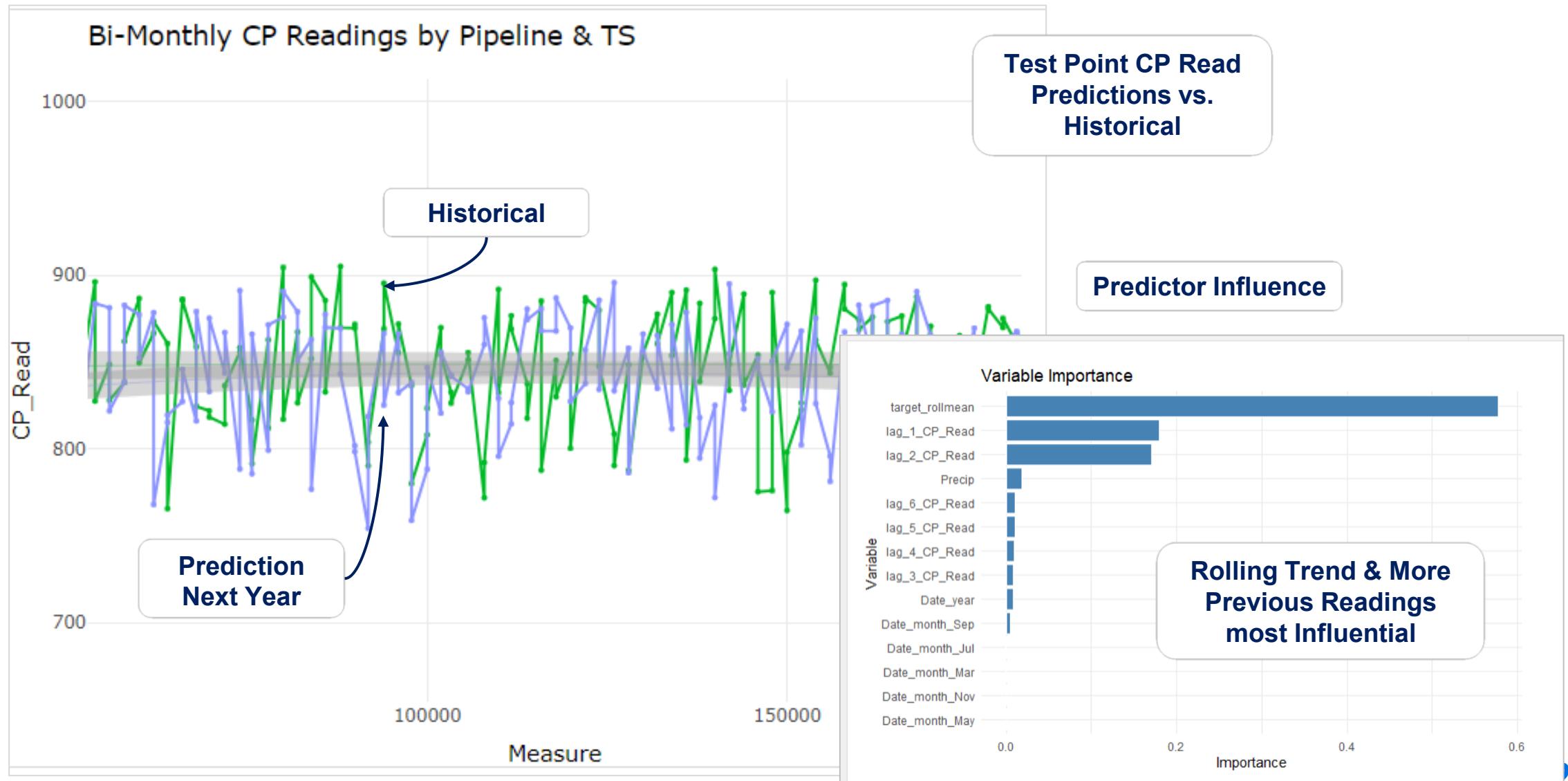
# Training Data



# Model Application & Results – All Test Stations



# Model Application & Results - Pipeline



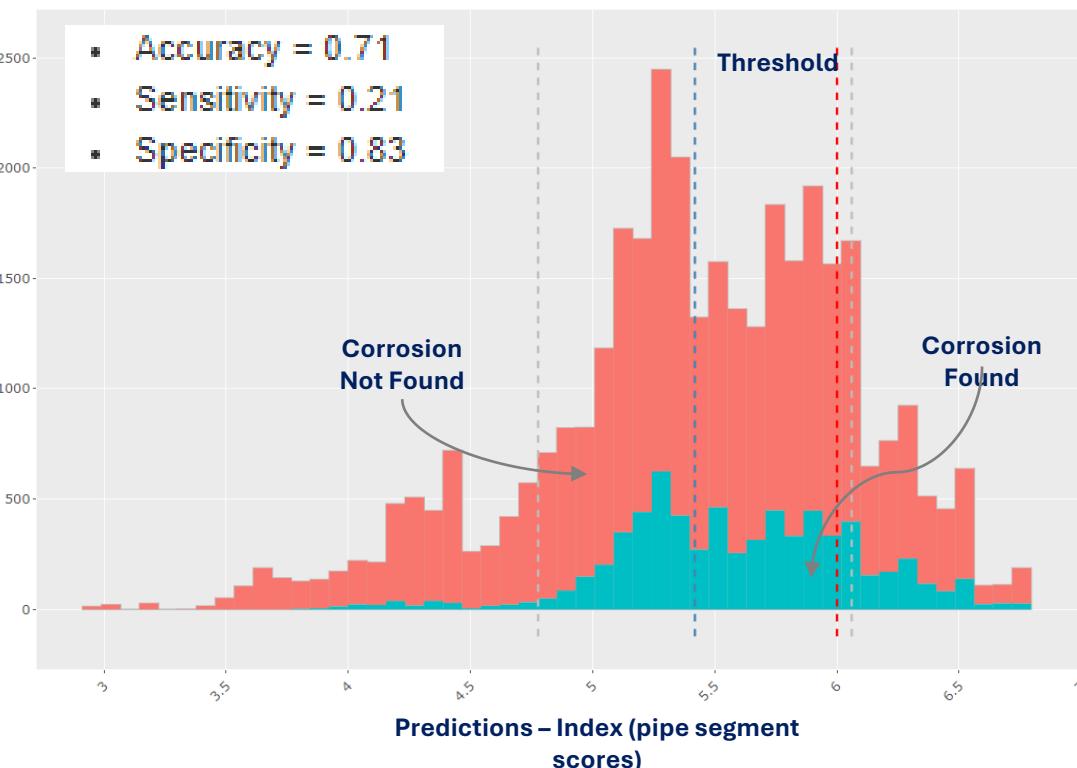
# Questions?

# Deterministic Model Validation

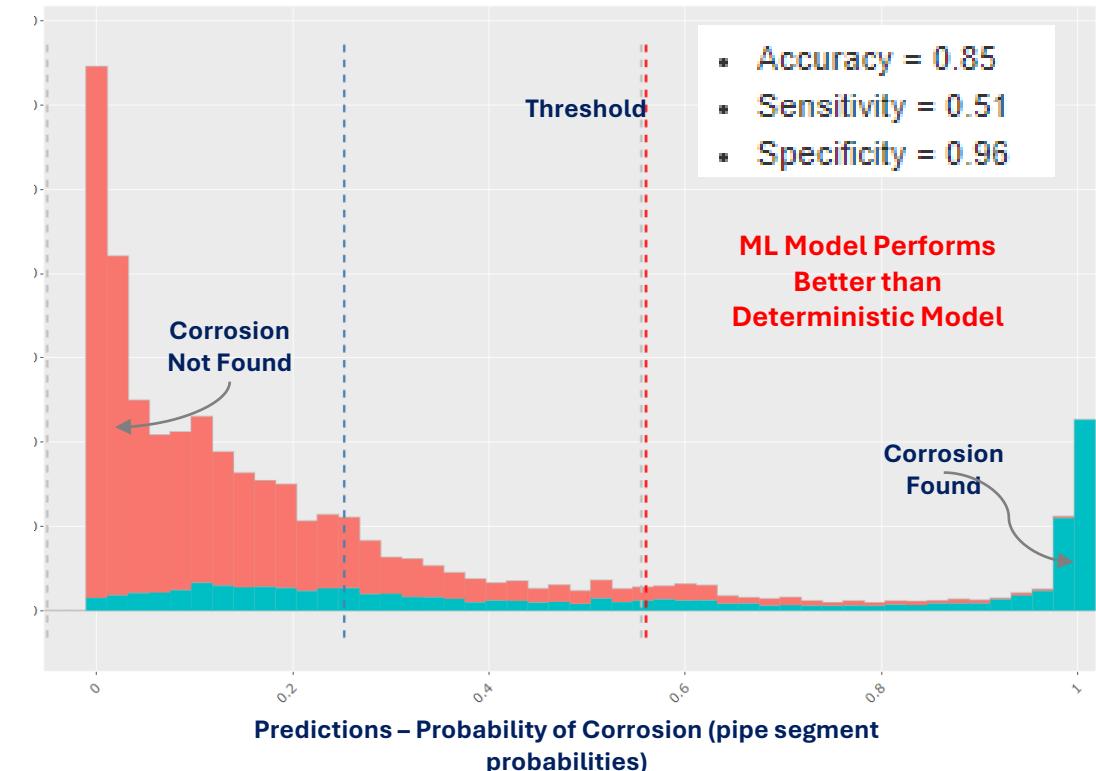


# Model Validation

## Deterministic Model



## Machine Learned Model



Model Learned based on Deterministic Structure

Model Learned with Observational Data

# Questions?

## Machine Learning based Integrity & Risk Management

- **Data Driven**
- **Validated**
- **Transparent**
- **Explainable**
- **Versatile**



# Machine Learning & Risk (TU9)



Michael Gloven, PE

[michaelgloven@pipeline-risk.com](mailto:michaelgloven@pipeline-risk.com)