

LIVE VIRTUAL TRAINING

Overview of Machine Learning for Pipeline Integrity Management

February 18, 2025

Anti-trust Reminder

- Southern Gas Association policy is to comply with federal and state antitrust laws. Participants in SGA meetings and programs **are not to discuss industry-wide or individual company prices** (current or projected) or matters relating to pricing such as costs, profits, wages, market allocation, or other competitively sensitive information.
- Compliance with the antitrust laws is a requirement for SGA membership and responsibility for compliance rests with each member and the SGA staff. Participants have an obligation to terminate any discussion, seek legal counsel's advice, or, if necessary, terminate any meeting if the discussion might be construed to raise antitrust risks.

Meet Your Instructor

Michael Gloven, PE

President, Pipeline-Risk (PLR)

As a founder and entrepreneur, Mike leads Pipeline-Risk (PLR) providing AI based machine learning solutions supporting energy pipeline systems and utilities worldwide. With over 30 years of experience in the oil, gas, and water industries, Mike has founded, co-founded or led numerous technology companies with the objective of improving reliability, risk, integrity and compliance for asset owners and operators.

About Pipeline-Risk (PLR)

Pipeline-Risk (PLR) is an engineering and technology company serving the oil, gas, and water pipeline industries. The company has completed risk projects across hundreds of thousands of miles of pipeline in North and South America using its ML.ai machine learning platform. The objective of ML.ai is to improve the identification, prediction and mitigation of risks for the purposes of improved safety, reliability and cost effectiveness of critical infrastructure.

Contact Us

📞 +1 (303) 881-4379

✉️ info@pipeline-risk.com

More Information

🌐 www.pipeline-risk.com

linkedin www.linkedin.com/company/pipeline-risk

▶ www.youtube.com/@MachineLearningIntegrity

LIVE VIRTUAL

FEB 18

OPERATIONS

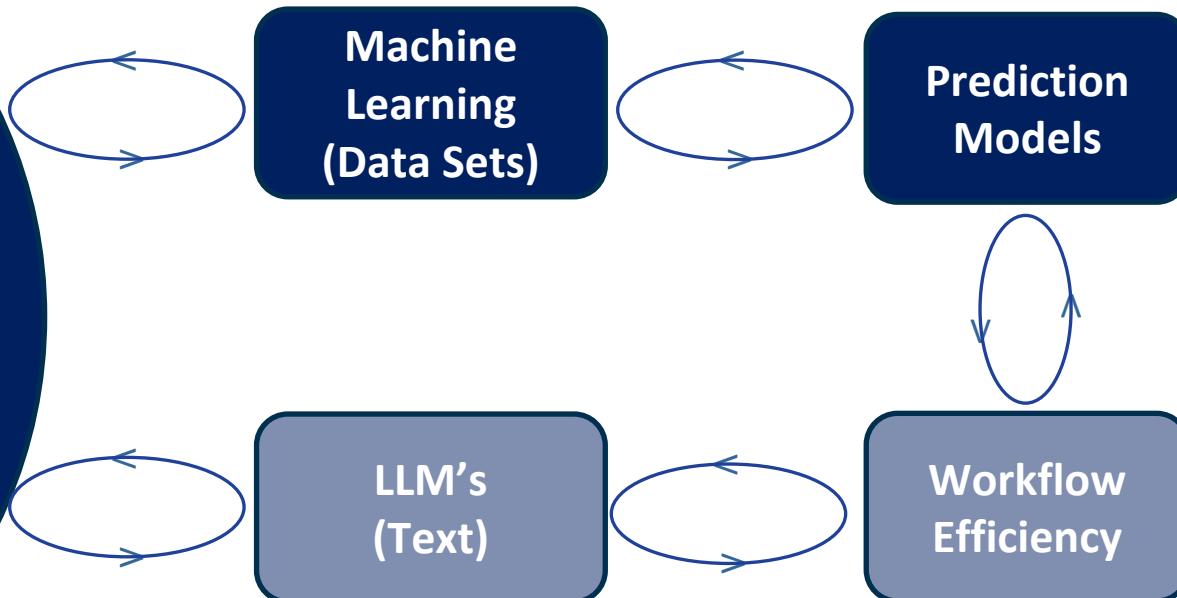
OVERVIEW OF MACHINE LEARNING FOR PIPELINE INTEGRITY MANAGEMENT

Webinar

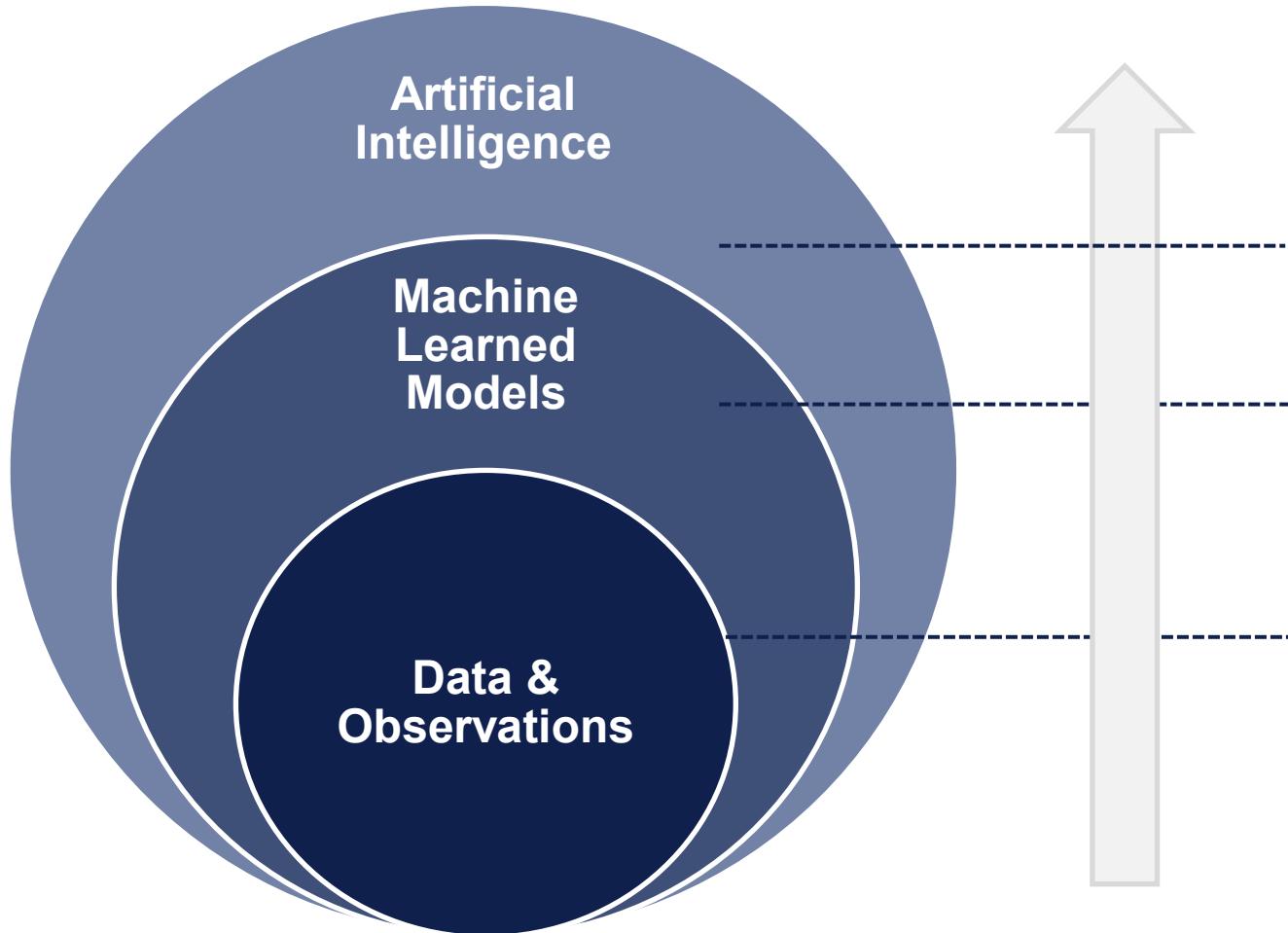
- AI & Machine Learning
- Machine Learning Process
- Use Cases
- Questions

Big Picture

AI Agents & Business Value



Big Picture



Automated Responses to Data Patterns
(Adjust CP, Self-Repair, Reduce Pressure)

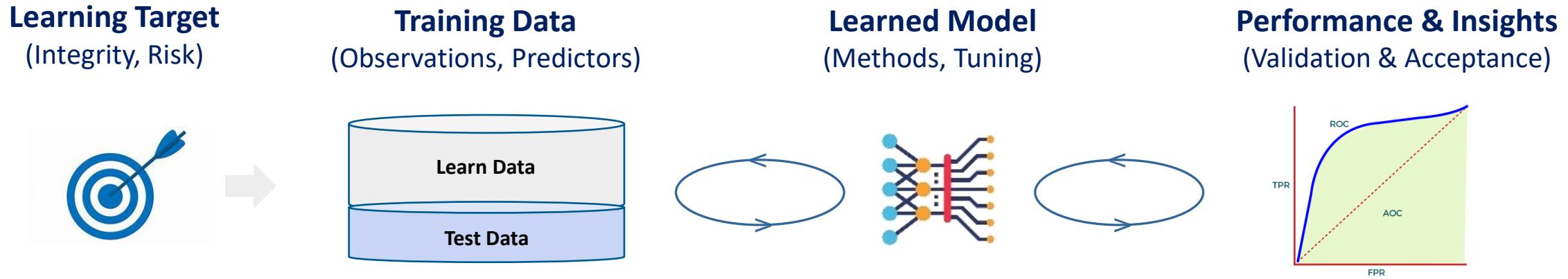
Identify Data Patterns Representing &
Influencing External Corrosion
Observations

External Corrosion Observations (Corrosion
Defects) and Underlying Influencing Data
(Coating Types, Soils, CP Readings, etc.)

Common Questions

- Are Machine Learned Models an Improvement Over Deterministic Models?
- Do I have Enough of the Right Data?
- Are Patterns Inferential or Predictive? What's the Difference?
- Does the Model Meet Domain Expert Review?
- What Assets can I Apply the Learned Model?
- Is Performance Acceptable for Production Use?

Machine Learning Process

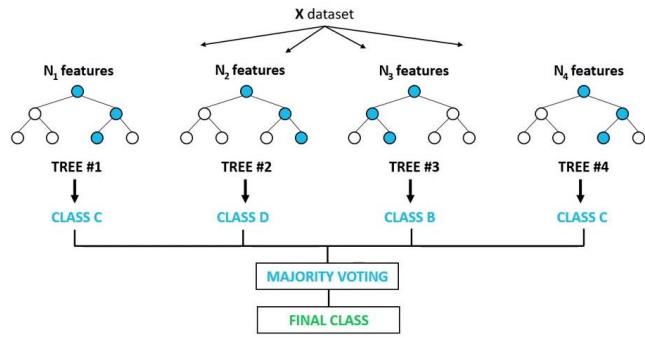


Key Points

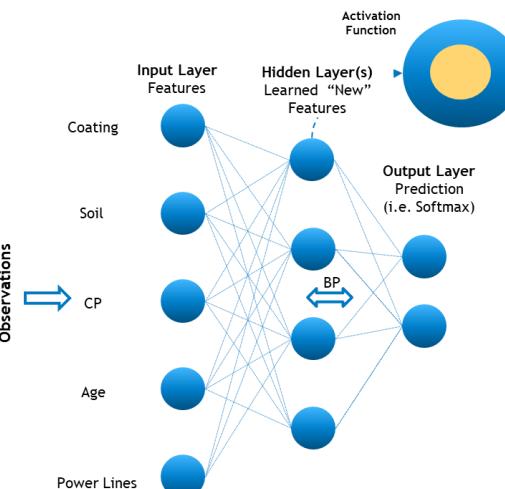
- Data Driven – Leverage Existing Data
- Validated – Models are Explicitly Validated
- Explainable – Models & Results are Fully Transparent & Explainable
- Versatile – Process may be Applied to Wide Range of Integrity & Risk Management Use Cases

Learning Methods

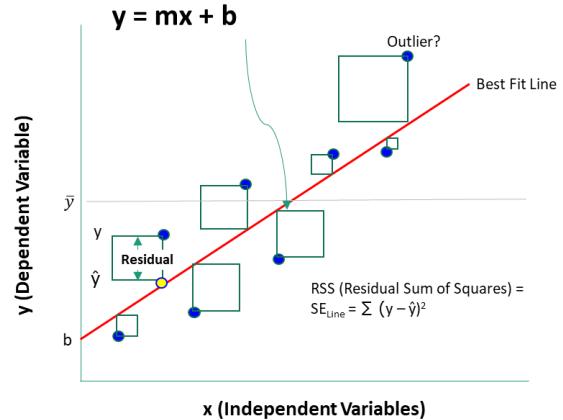
Tree Bagging



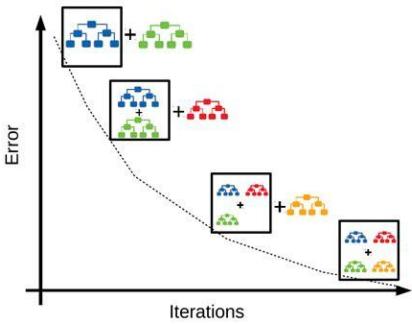
Neural Net



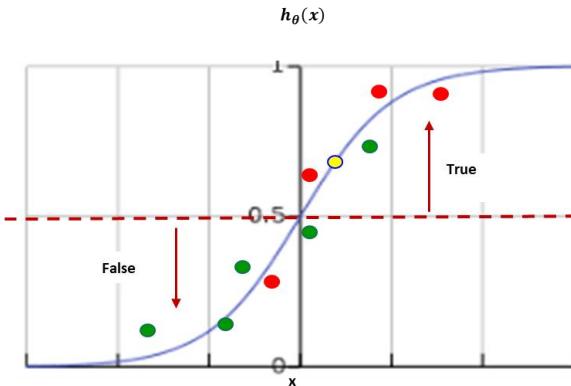
Linear Regression



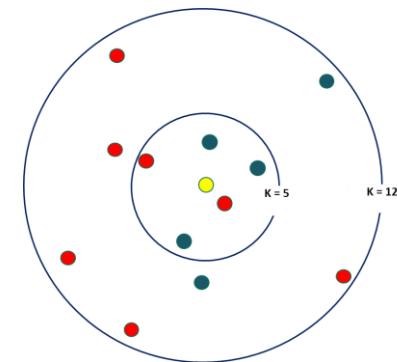
Tree Boosting



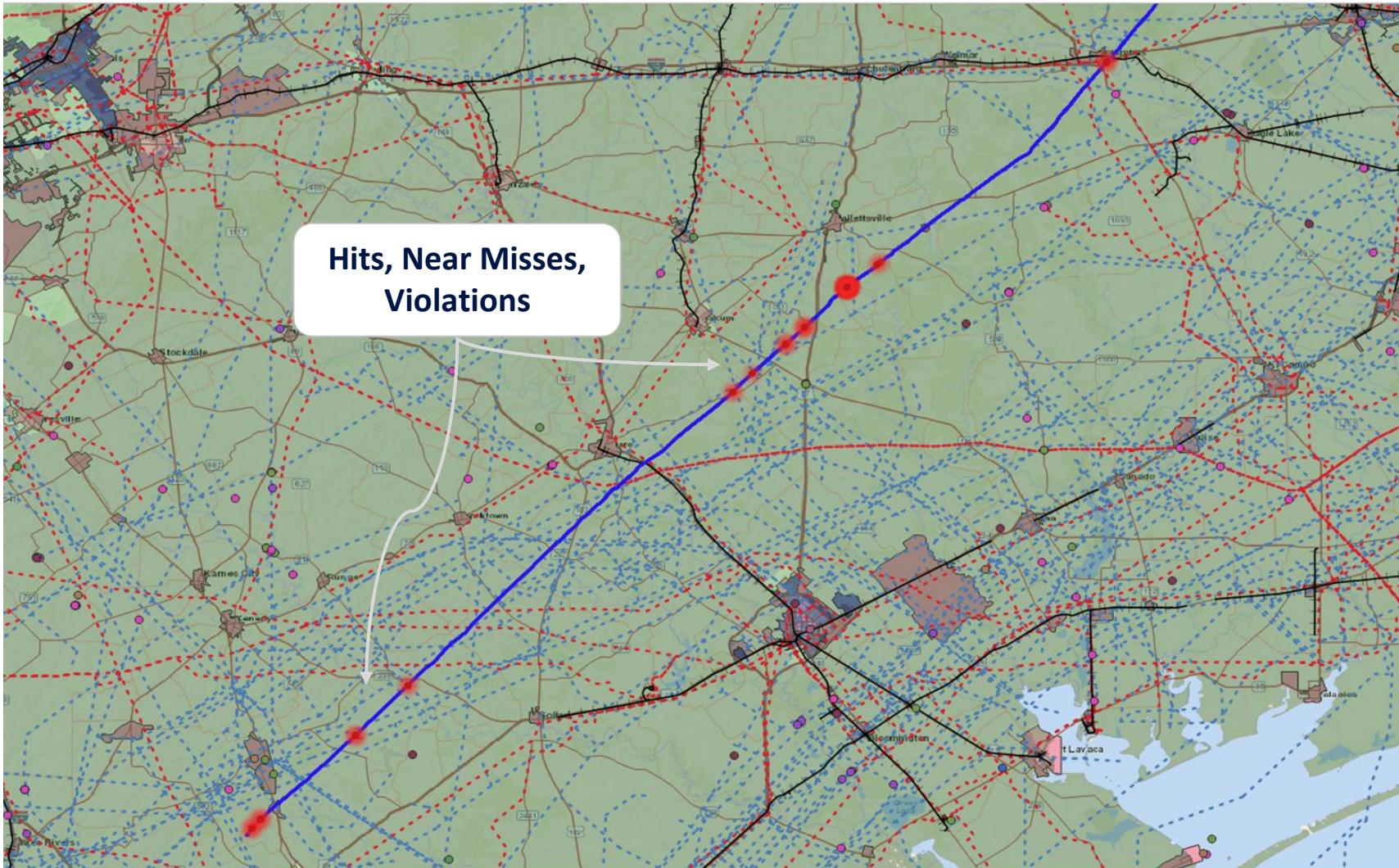
Logistic Regression



KNN



Third Party Damage Susceptibility (Classification)



Training Data

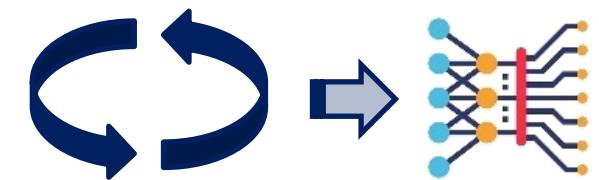
- Hits & Near-Misses
- One-Calls
- Pipe Properties
- Depth Cover
- Activity
- Land-Use
- Crossings
- Structures
- Patrol
- Public Awareness

Learning Target

Predictors

		Class	Diameter	DOC	Farmland	Install_Yr	LineMark	PatroFreq
All	A	A	All	A	All	All	All	All
No_Evidence	F	1.00	8.00	24.00	Not_Farmland	1,980.00	Line_of_Site	Semi-Annual
No_Evidence	F	1.00	8.00	24.00	Not_Farmland	1,980.00		Semi-Annual
No_Evidence	F	1.00	8.00	25.00	Not_Farmland	1,980.00	Line_of_Site	Semi-Annual
No_Evidence	F	1.00	8.00	33.00	Not_Farmland	1,980.00	Line_of_Site	Semi-Annual
No_Evidence	F	1.00	8.00	30.00	Not_Farmland	1,980.00	Line_of_Site	Semi-Annual
One_Call_Violation	T	1.00	8.00	26.00	Not_Farmland	1,980.00	Line_of_Site	Semi-Annual
One_Call_Violation	T	2.00	8.00	26.00	Not_Farmland	1,980.00	Line_of_Site	Semi-Annual
Near_Miss	T	2.00	8.00	29.00	Farmland	1,980.00	Line_of_Site	Semi-Annual
One_Call_Violation	T	2.00	8.00	24.00	Farmland	1,980.00	Line_of_Site	Semi-Annual
Near_Miss	T	2.00	8.00	28.00	Farmland	1,980.00	Line_of_Site	Semi-Annual
Near_Miss	T	2.00	8.00	34.00	Farmland	1,980.00	Line_of_Site	Semi-Annual
Near_Miss	T	2.00	8.00	41.00	Farmland	1,980.00	Line_of_Site	Semi-Annual
No_Evidence	F	2.00	8.00	31.00	Farmland	1,980.00	Line_of_Site	Bi-Weekly
No_Evidence	F	3.00	8.00	24.00	Farmland	1,980.00	Line_of_Site	Bi-Weekly

Training Data



Machine
Learning
Process

Learned
Model

Learned Model Classification Performance

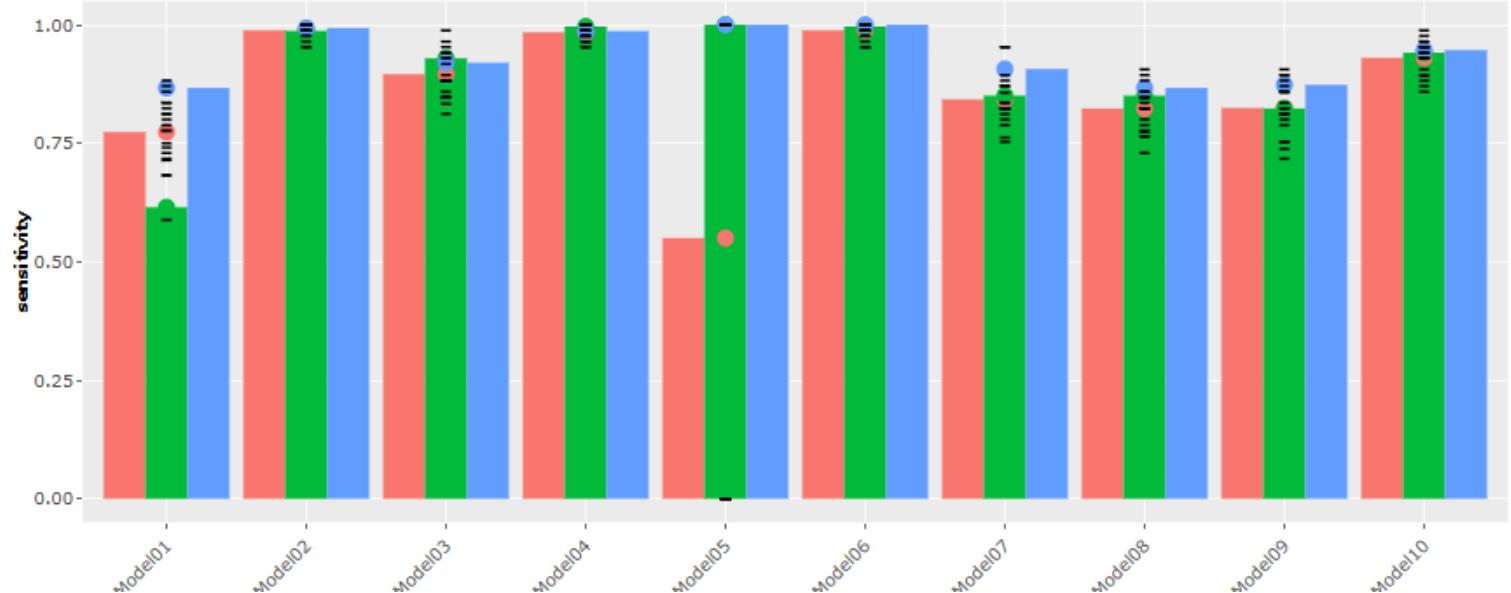
Metrics

- Accuracy
- Sensitivity
- Specificity
- AUC

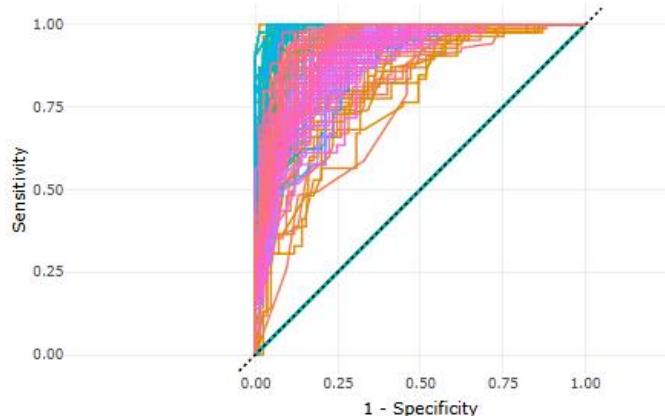
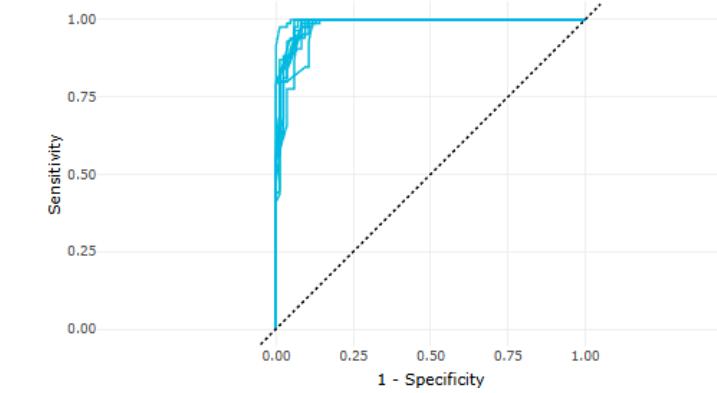
Model

- Xgboost Method
- 2000 Trees
- 5 Depth
- 2 Min Obs
- .0001 Loss

Candidate Model Performance

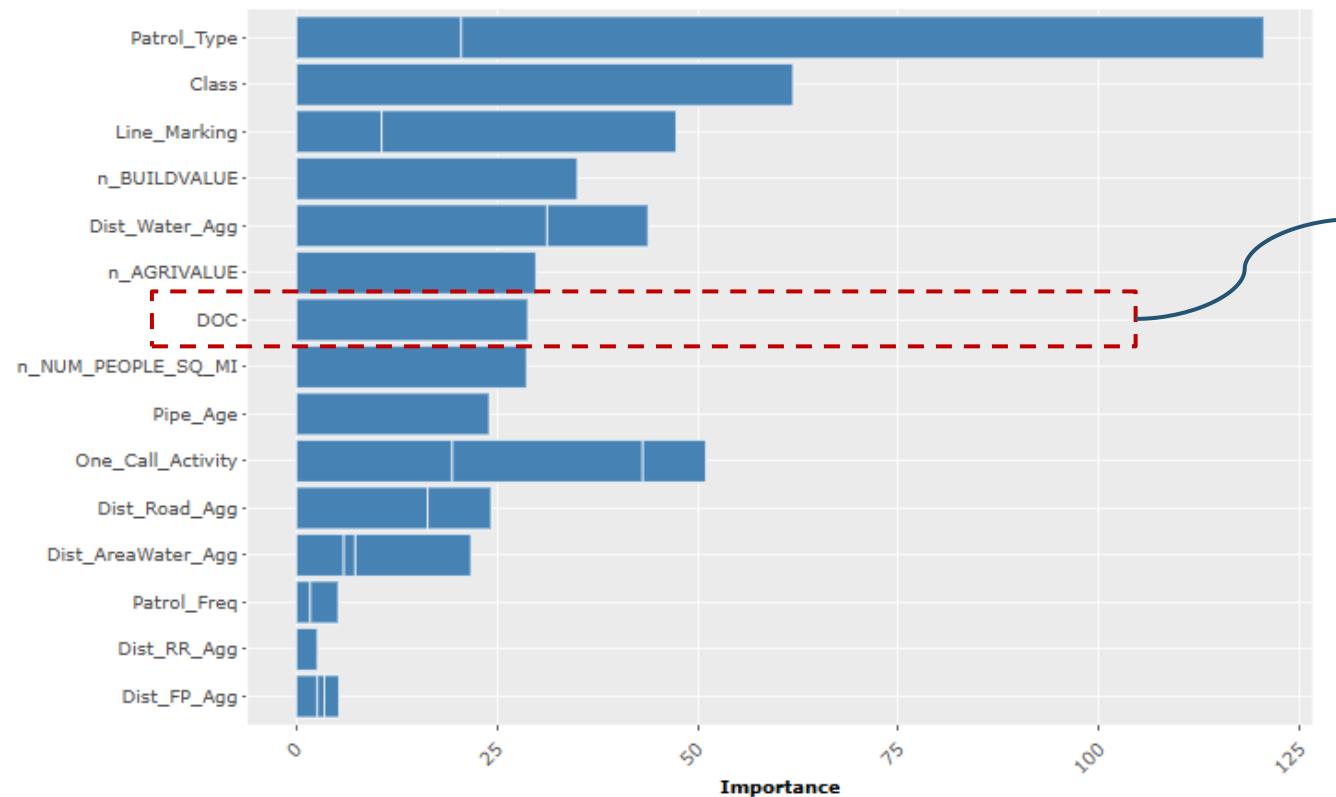


Candidate Model ROC's

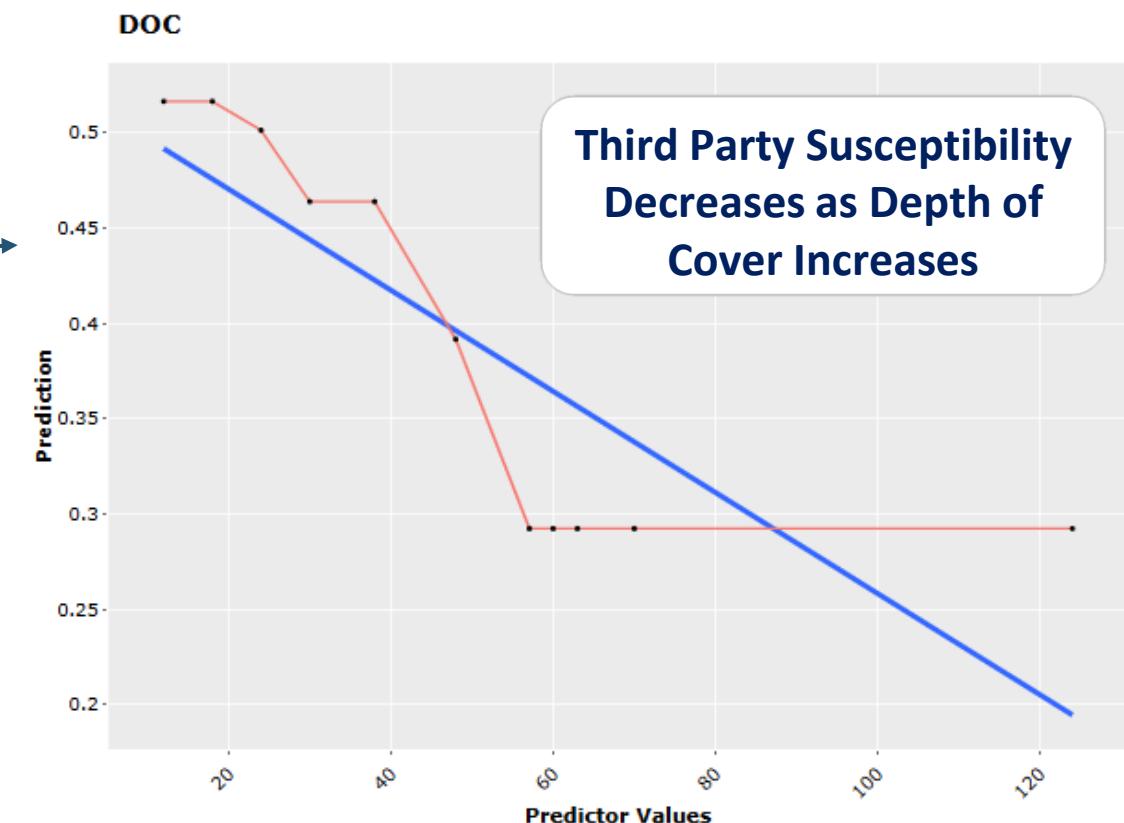


Learned Model – Global Weights

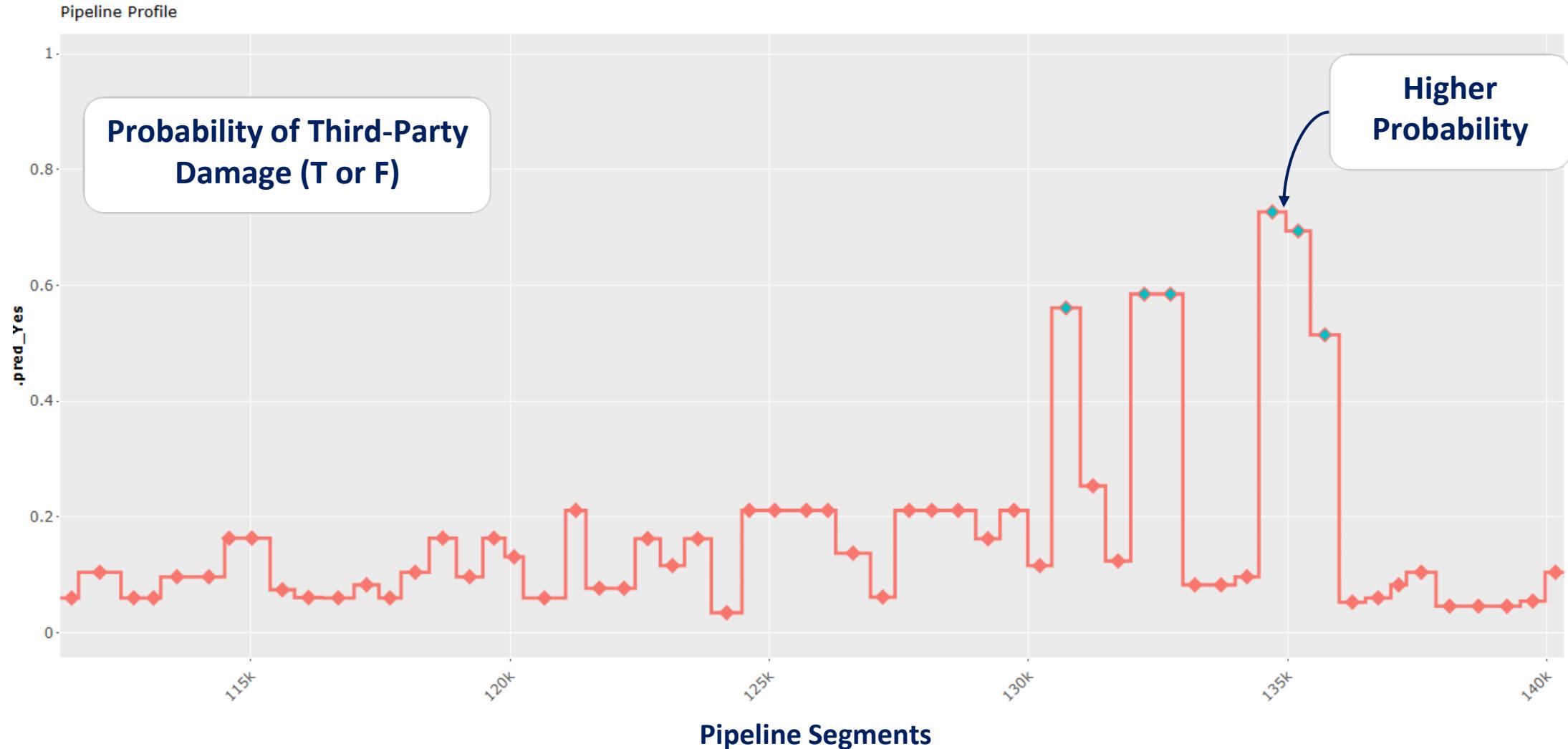
Model Predictor Importance



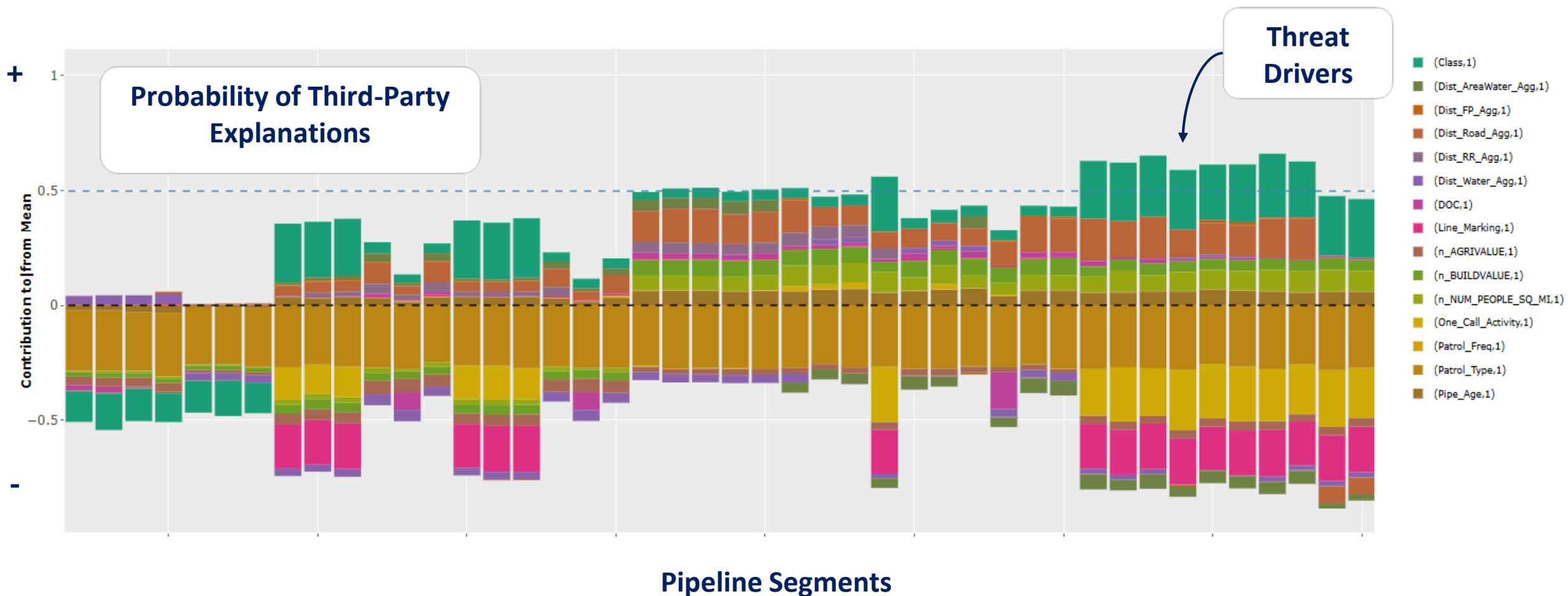
Model Predictor Directionality



Learned Model Application



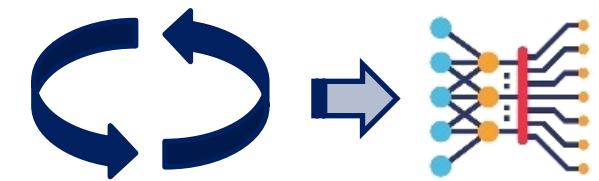
Learned Model Application & Explanation



External Corrosion Severity (Regression)

Learning Target	Predictors							
	Change	Dist_Road_Agg	DOC	n_AGRIVALEUE	Nominal_OD	Pipe_Coating	Pipe_Seam	st_SOIL_cor
		All		All	All	All	All	All
2.05	-0.03	Limited_Impact	24.00	0.00	30.00	ASPHALT_ENAMEL	DSAW	High
2.05	-0.01	Out_Of_Range	30.00	0.00	30.00	TGF_E	DSAW	Moderate
2.00	-0.02	Out_Of_Range	24.00	0.00	30.00	TGF_E	DSAW	Moderate
2.00	-0.03	Limited_Impact	24.00	0.00	30.00	TGF_E	DSAW	Moderate
2.00	-0.03	Out_Of_Range	60.00	0.00	18.00	TGF_A	DSAW	High
2.00	-0.03	Out_Of_Range	63.00	0.00	18.00	TGF_A	DSAW	High
1.90	-0.07	Potential_Impact	24.00	0.00	30.00	TGF_E	DSAW	Moderate
1.85	-0.03	Out_Of_Range	18.00	0.00	30.00	TGF_E	DSAW	Moderate
1.80	0.02	Limited_Impact	24.00	0.00	18.00	FBE	DSAW	High
1.75	-0.03	Limited_Impact	24.00	0.00	30.00	TGF_H	DSAW	Moderate
1.70	-0.07	Limited_Impact	24.00	0.00	30.00	TGF_E	DSAW	Moderate
1.70	-0.07	Limited_Impact	30.00	0.00	30.00	TGF_E	DSAW	Moderate
1.70	-0.08	Potential_Impact	24.00	0.00	30.00	TGF_E	DSAW	Moderate
1.70	-0.08	Out_Of_Range	24.00	0.00	30.00	TGF_E	DSAW	Moderate
1.70	-0.07	Out_Of_Range	24.00	0.00	30.00	TGF_E	DSAW	Moderate

Training Data



Machine Learning Process

Learned Model

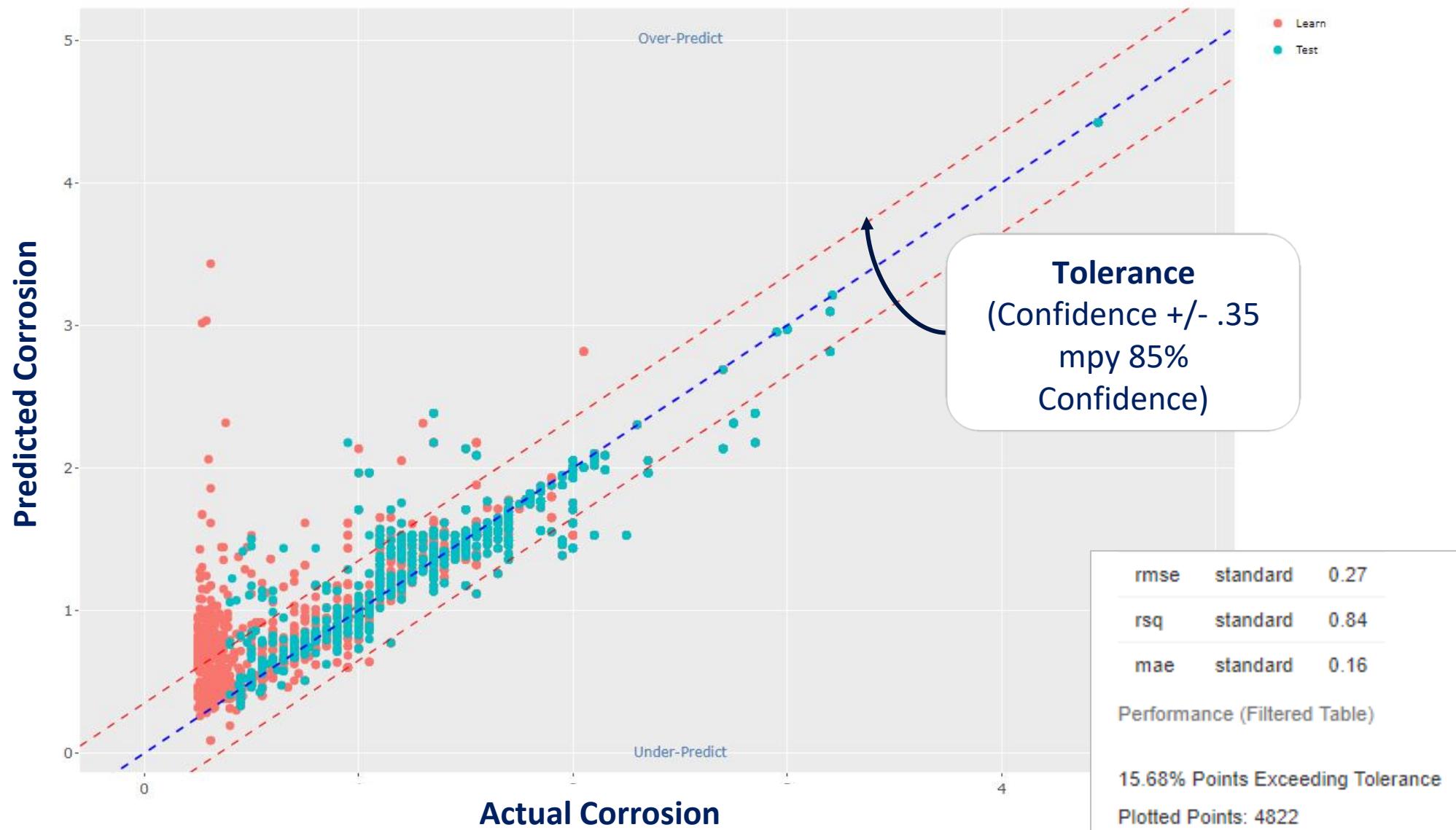
Learned Model

Regression

Performance

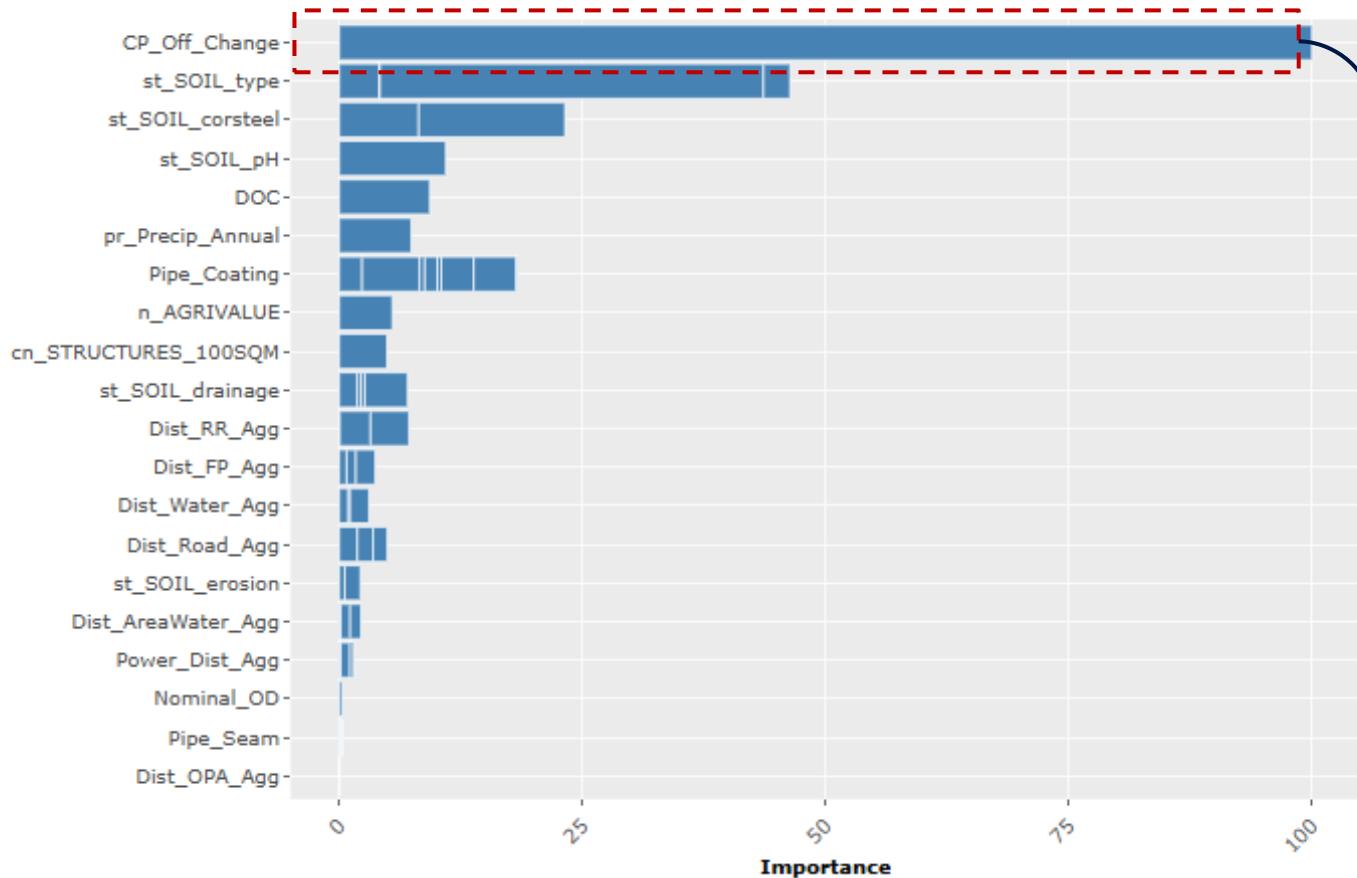
Metrics

- RMSE
- R2
- MAE



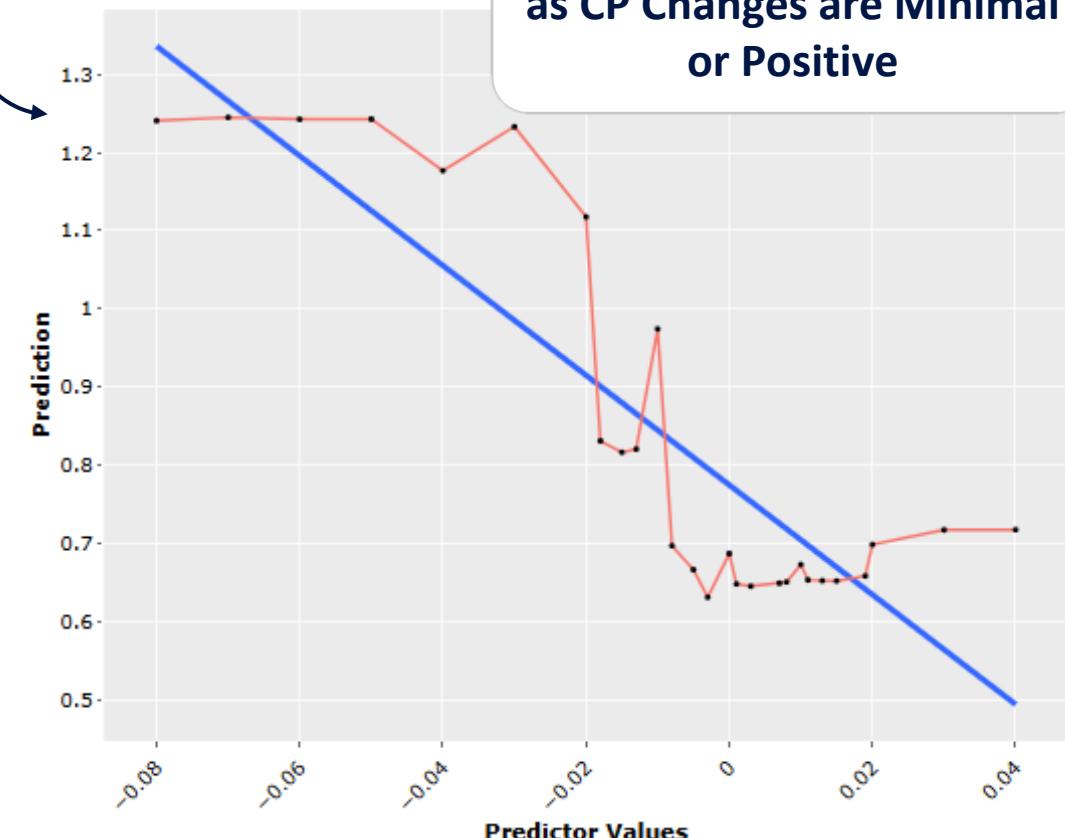
Learned Model – Global Weights

Model Predictor Importance

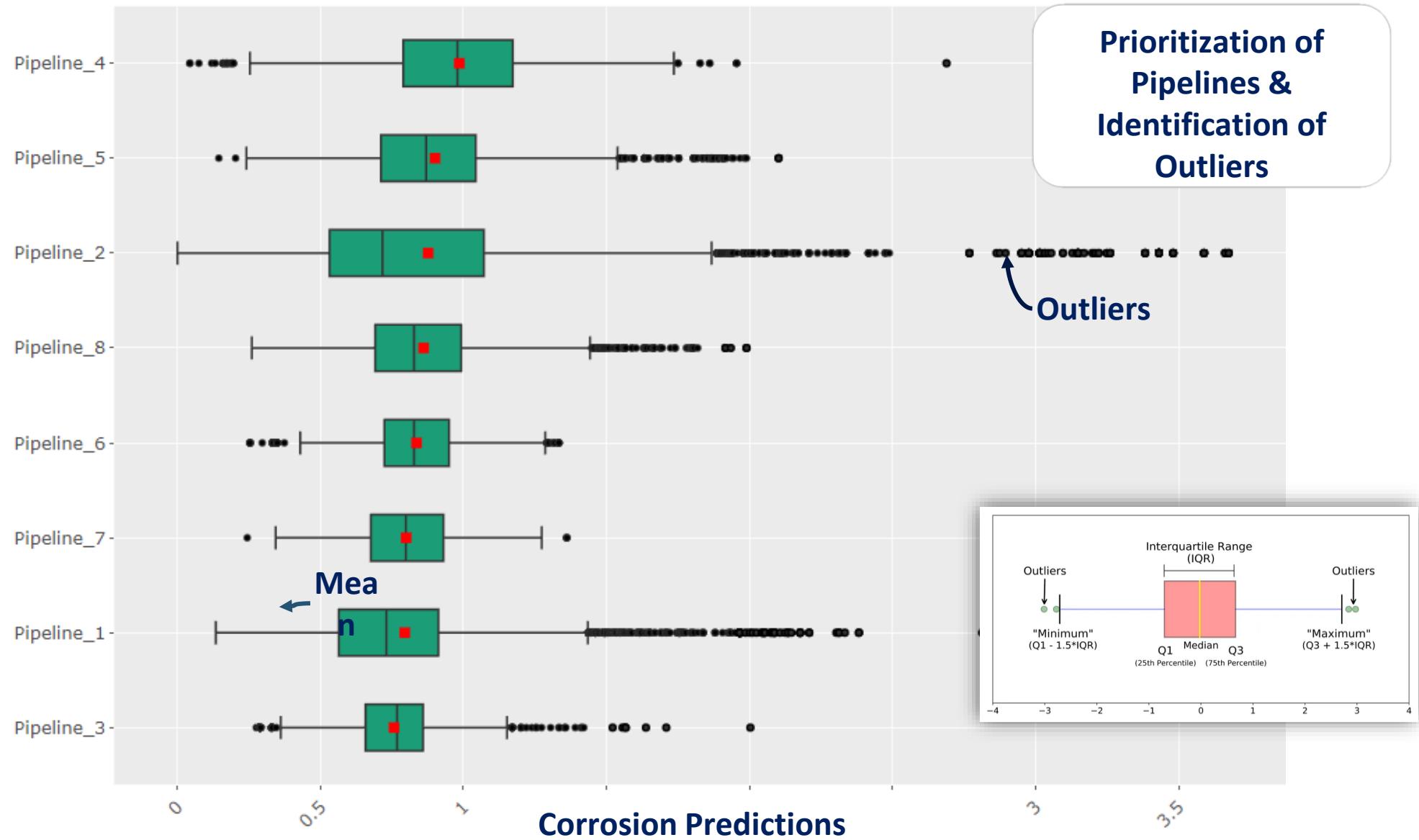


Model Predictor Directionality

CP_Off_Change

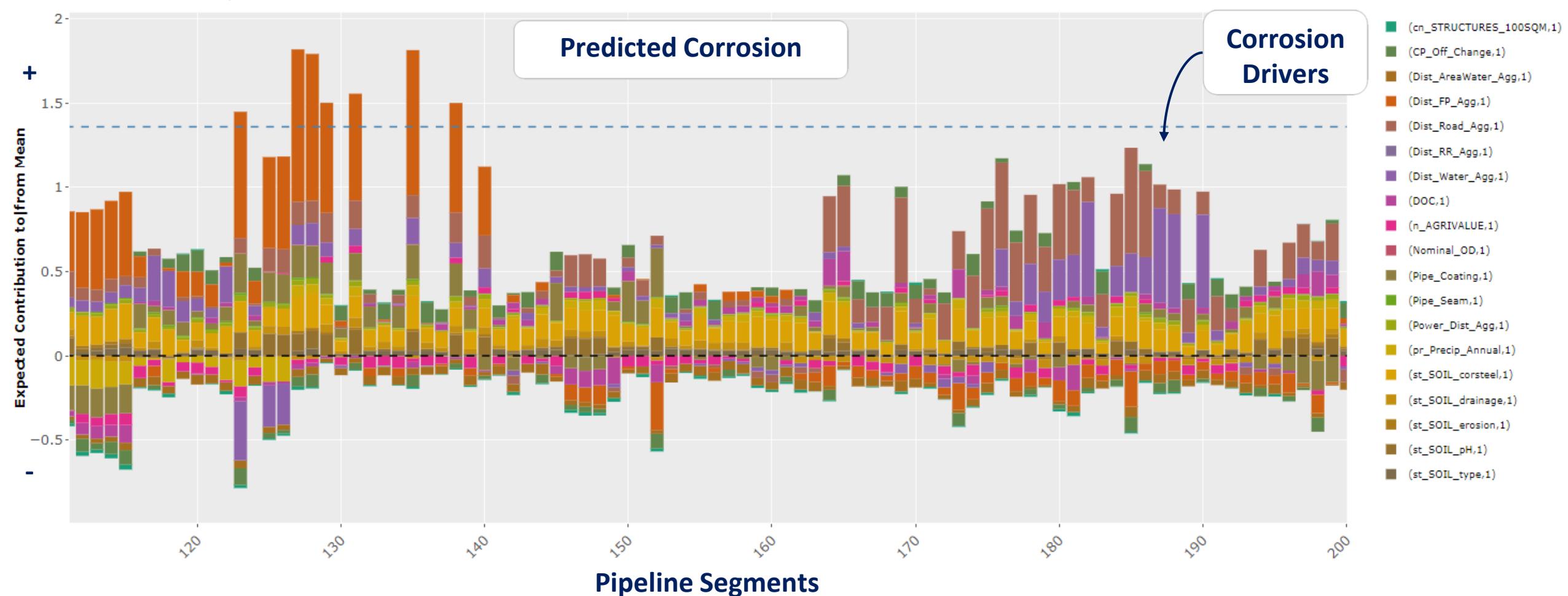


Learned Model Application



Learned Model Application & Explanations

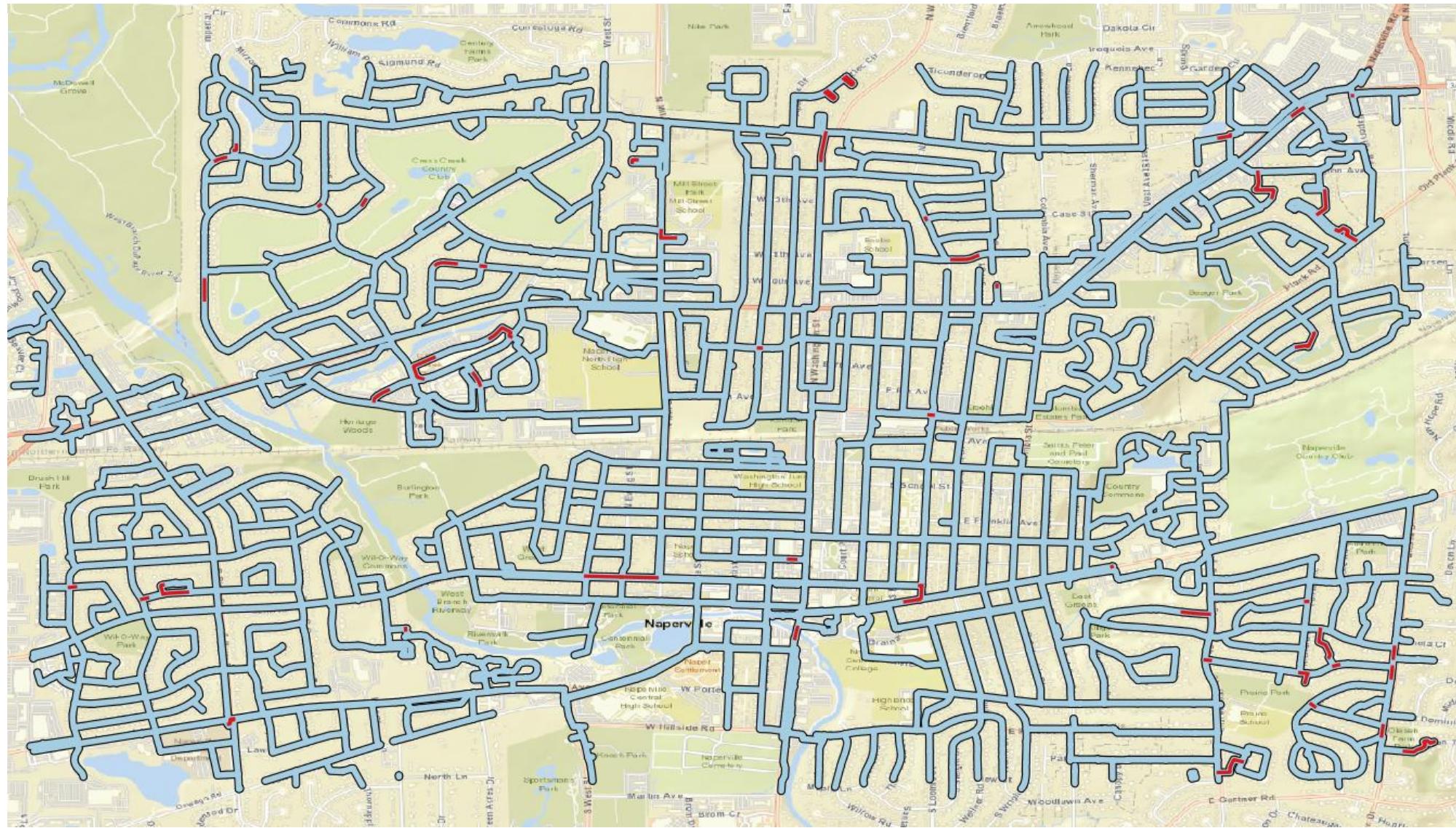
Predictor Influence by Record - Break_Down



Distribution System Monetized Risk (QRA)

Distribution System w\Leak Observations

Leaks

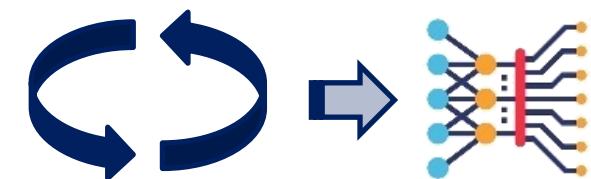


Predictors

Learning Target
(Leak Rate)

		ference	Coating_Type	CP_Reading	Diameter	Dist_FP	Dist_OPA	Material	MPY_Observed	n_AGRIVALE	pr_Precip_Annu
			All	All	All	A	All	A	All	All	All
0.02	No		No Coating	-0.90	8.00	715.28		CAS	0.91	139.42	
0.00	No		PE	-1.90	8.00	328.09		STEEL	-0.18	0.00	
0.00	No		PE	-1.10	6.00	820.29		STEEL	0.49	345.31	
0.06	No		Unknown	-0.90	8.00			UNK	0.66	0.00	
0.00	No		PE	-1.60	6.00	1,712.54		STEEL	0.07	345.31	
0.02	No		TGF	-1.50	6.00	540.21		STEEL	0.16	345.31	
0.01	No		No Impact	0.00	6.00	88.33		PVC	-0.00	0.00	
0.01	No		Unknown	-0.70	6.00	1,334.41		UNK	0.83	0.00	
0.00	No		FBE	-1.60	6.00			STEEL	1.13	0.00	
0.00	No		FBE	-1.40	8.00	879.58		STEEL	1.30	0.00	
0.01	No		PE	-1.90	8.00	2,032.54		STEEL	-0.18	855.06	
0.01	No		PE	-1.90	8.00	2,018.25		STEEL	-0.18	855.06	
0.01	No		PE	-1.90	8.00	1,963.73		STEEL	-0.18	855.06	
0.01	No		PE	-1.70	8.00	1,961.68		STEEL	-0.01	855.06	
0.01	No		PE	-1.00	16.00	2,020.61		STEEL	0.58	855.06	
0.01	No		PE	-1.90	16.00	2,014.44		STEEL	-0.18	855.06	
0.01	No		PE	-1.30	16.00	2,222.94		STEEL	0.32	855.06	
0.00	No		PE	-1.80	8.00	2,179.92		STEEL	-0.10	855.06	
0.03	No		No Coating	-1.00				CAS	0.82	0.00	

Training Data



Machine Learning Process

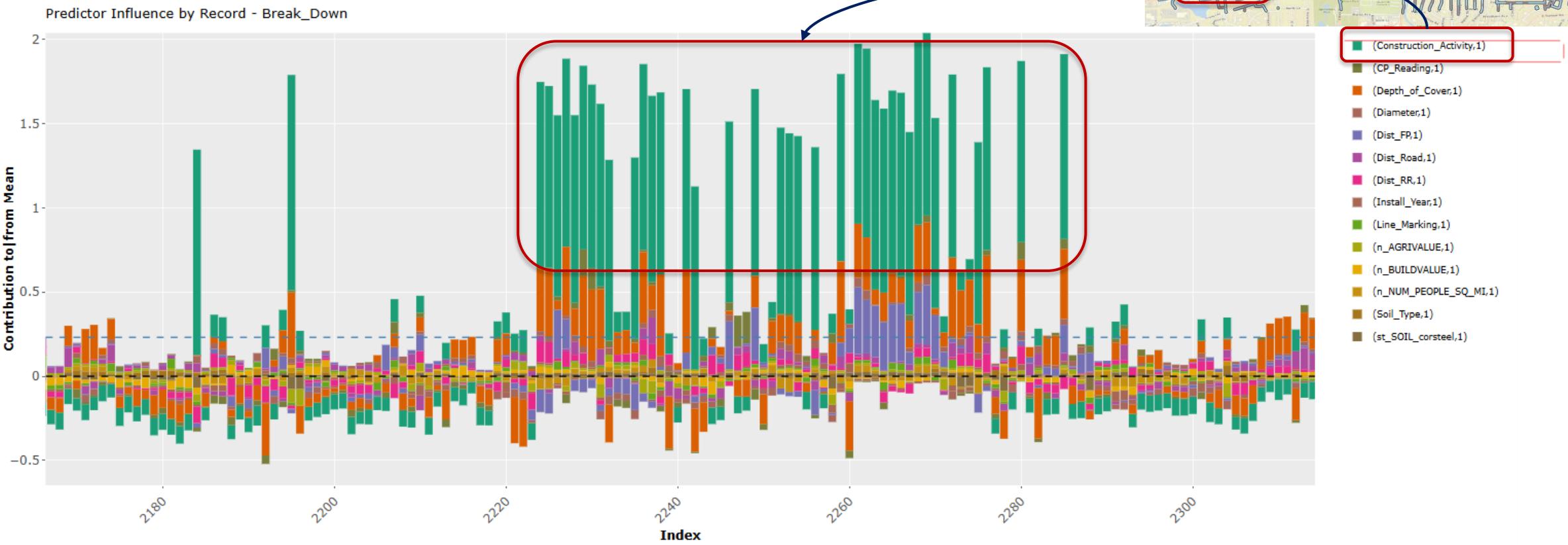
Learned Model

Learned Model Application (Predict Leaks)

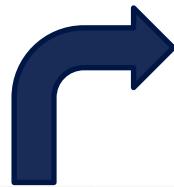
Leak Probabilities (exceeding Criteria)

Model Explanations Defining Cohort Mitigation and Replacement Plans

Higher Threat Risk Areas Driven by High Construction Activity

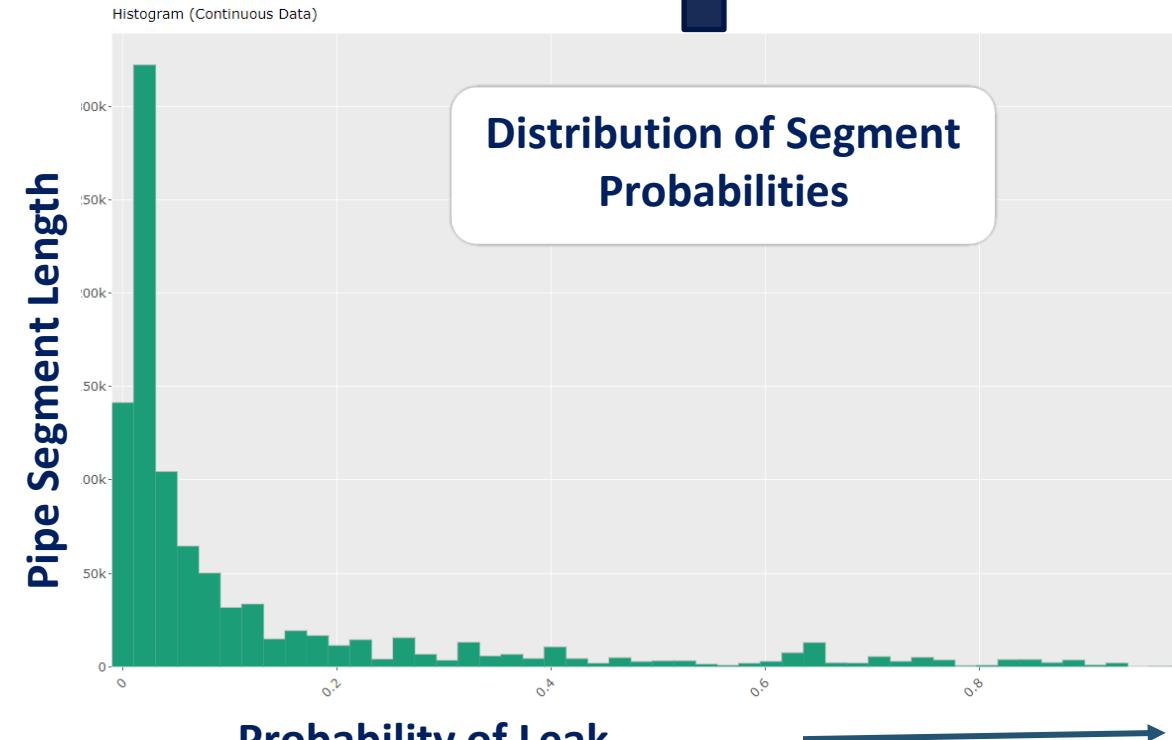


Monetized System Risk Distribution Leaks

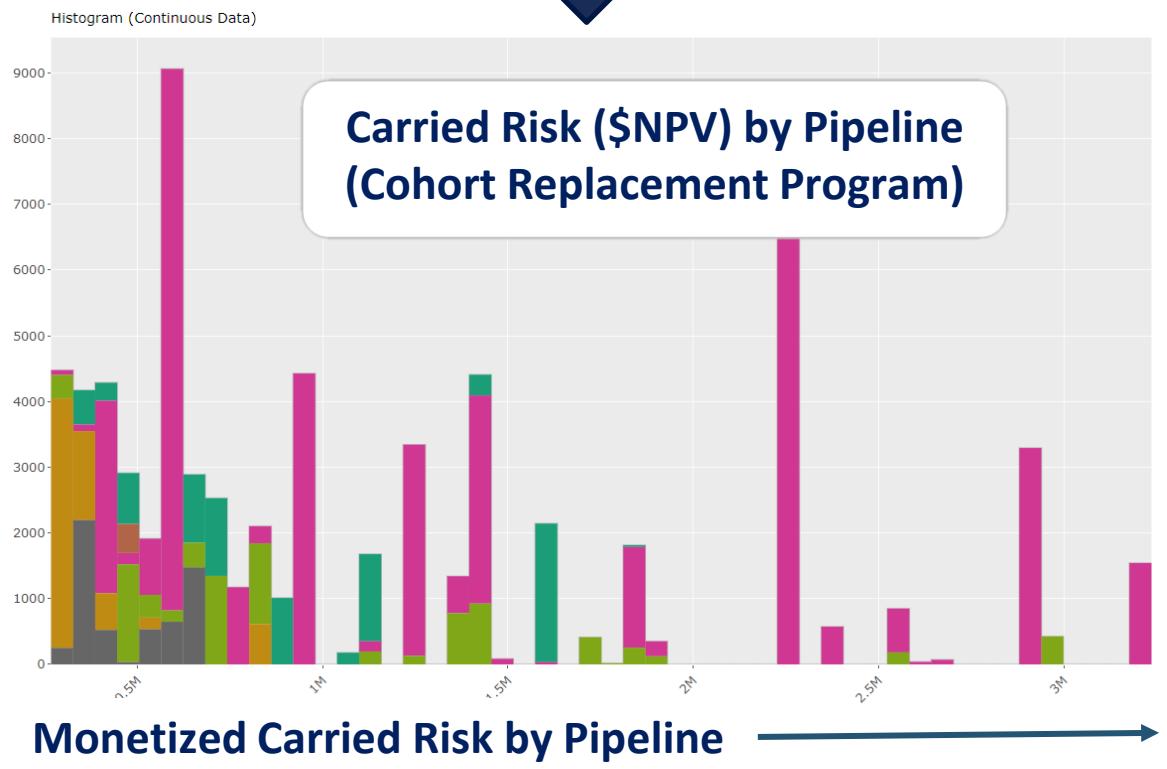


QRA

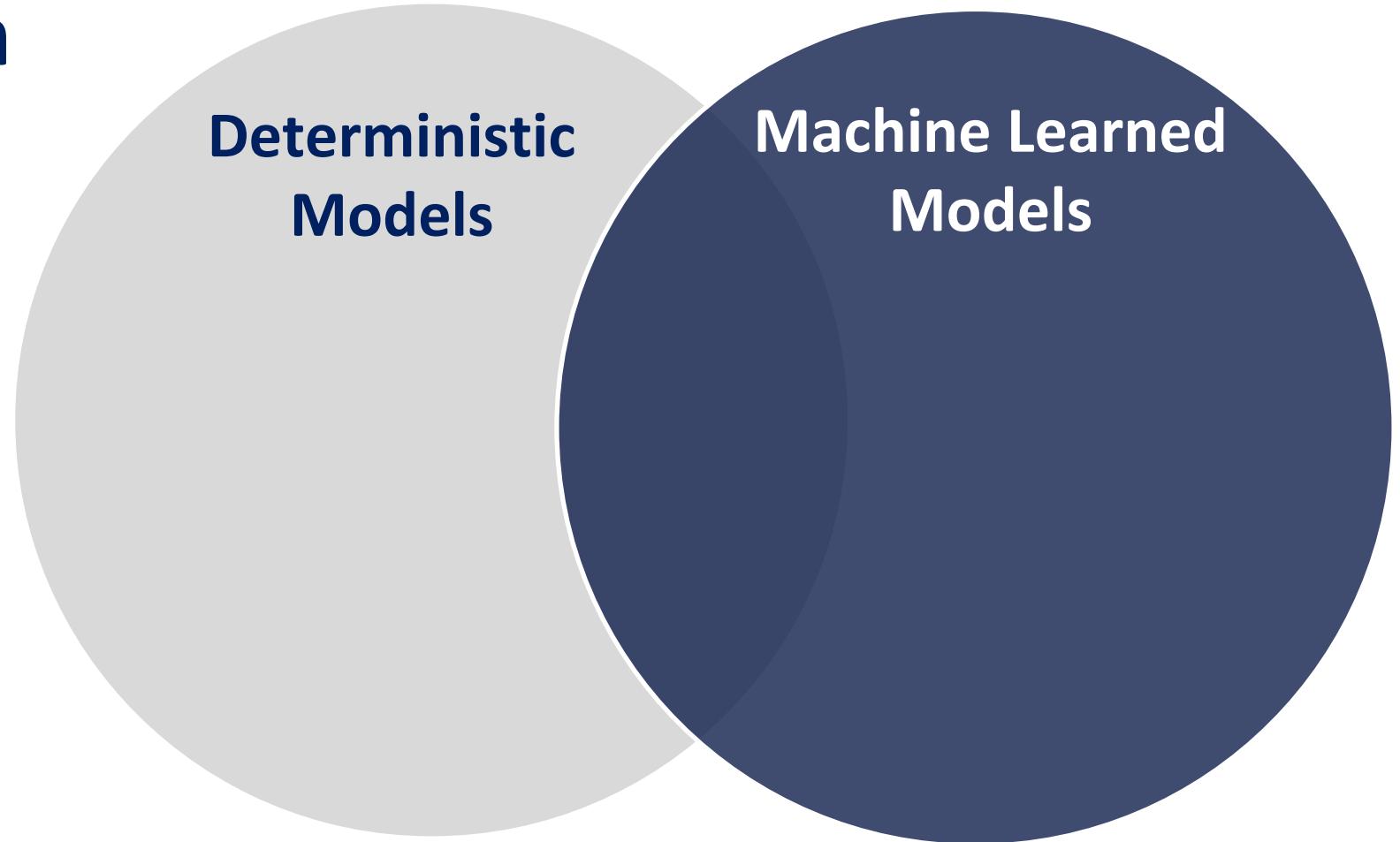
- Consider resistance (pipe WT, toughness)
- Normalize to incident distributions (P50\P99)



Machine Learned Results

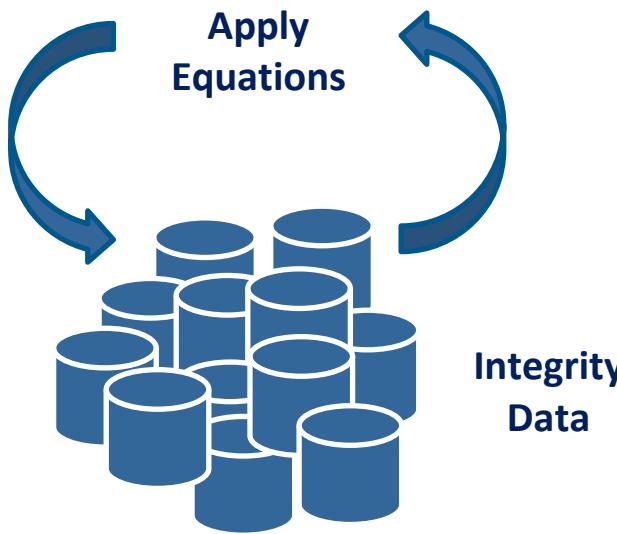


Deterministic Model Validation

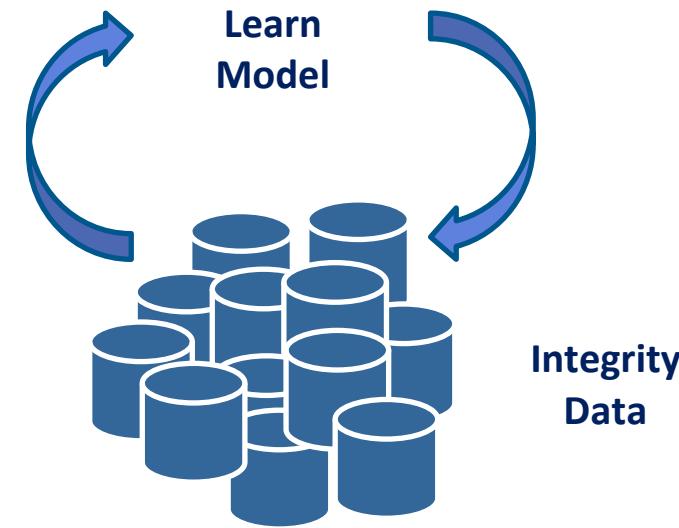


**“Machine Learning Adapts Your Model To Your Business
And Not The Business To Your Model”**

Deterministic Models



Machine Learned Models

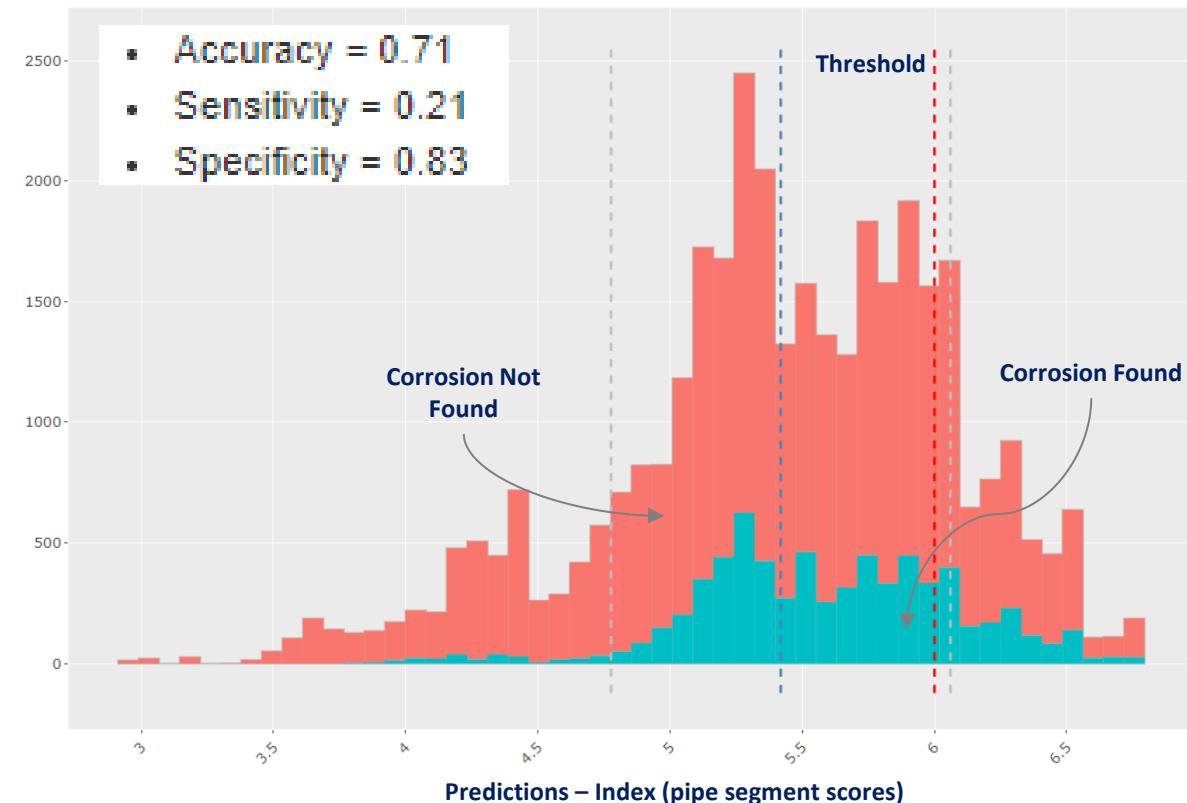


**Same Integrity Data Used for Both
Approaches**

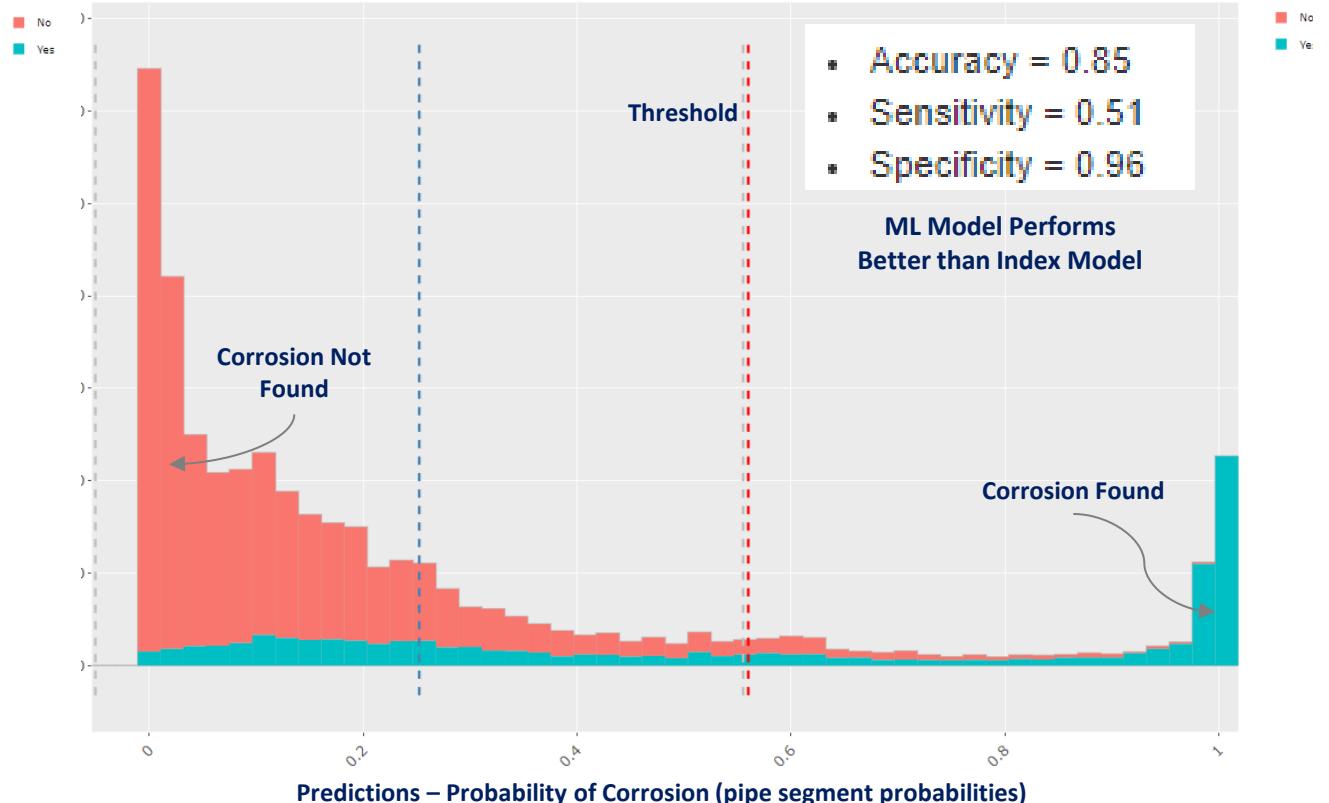
Deterministic vs. Machine Learned Performance

External Corrosion Example (Same Predictor Data - Deterministic vs. Machine Learned both Tested w\Observations)

Deterministic Model



Machine Learned Model



Model Learned based on Deterministic Structure

Model Learned with Observational Data

Summary

Value of Machine Learning to Integrity & Risk Management

- Data Driven – Leverage Existing Data
- Validated – Models are Explicitly Validated
- Explainable – Models & Results are Fully Transparent & Explainable
- Versatile – Process may be Applied to Wide Range of Use Cases

Resources

Open Source AI & ML Software

- [R TidyModels](#)
- [Python scikit Learn](#)
- [LLM's](#)

Machine Learning for Pipeline Integrity Management

April 2nd - 3rd, SGA Facility in Dallas, TX

Additional Training: Introduction to Machine Learning with Hands-on Lab Exercises

Q&A

Asking a Question:

Please use the Questions Box in the control panel

ALL-ACCESS PASS

“The All-Access Pass has been a game changer... I've definitely been taking advantage of it this year!”

UNLIMITED VIRTUAL TRAINING FOR YOUR ORGANIZATION.

Learn more at *southerngas.org/all-access-24/*

THANK YOU FOR ATTENDING

For more trainings, visit our website:
SouthernGas.org/Upcoming-Courses

To receive a PDH certificate, please
complete the course survey provided
during this class.

